Skip to content

Commit

Permalink
Add Friesian multi task example code and readme (intel-analytics#5460)
Browse files Browse the repository at this point in the history
* add multi task example codes and readme

* fix for Friesian code style

* part 1: fix comments in pr

* update for comments part 2

* update for pr comments part 3

* update for code style

* update codes and add test results

* Update README.md
  • Loading branch information
devWangBin authored and ForJadeForest committed Sep 20, 2022
1 parent 02c08a0 commit 33c61ad
Show file tree
Hide file tree
Showing 4 changed files with 553 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,4 @@ __pycache__
target
build
dist
apps/wide-deep-recommendation/model_training.ipynb
160 changes: 160 additions & 0 deletions python/friesian/example/multi_task/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# Multi-task Recommendation with BigDL
In addition to providing a personalized recommendation, recommendation systems need to output diverse
predictions to meet the needs of real-world applications, such as user click-through rates and browsing (or watching) time predictions for products.
This example demonstrates how to use BigDL Friesian to train [MMoE](https://dl.acm.org/doi/pdf/10.1145/3219819.3220007) or [PLE](https://dl.acm.org/doi/pdf/10.1145/3383313.3412236?casa_token=8fchWD8CHc0AAAAA:2cyP8EwkhIUlSFPRpfCGHahTddki0OEjDxfbUFMkXY5fU0FNtkvRzmYloJtLowFmL1en88FRFY4Q) for multi-task recommendation with large-scale data.

## Prepare the environment
We highly recommend you use [Anaconda](https://www.anaconda.com/distribution/#linux) to prepare the environment, especially if you want to run on a yarn cluster.
```
conda create -n bigdl python=3.7 #bigdl is conda environment name, you can set another name you like.
conda activate bigdl
pip install bigdl-friesian[train]
pip install tensorflow==2.9.1
pip install deepctr[cpu]
```
Refer to [this document](https://bigdl.readthedocs.io/en/latest/doc/UserGuide/python.html#install) for more installation guides.

## Data Preparation
In this example, a [news dataset](https://github.com/zhongqiangwu960812/AI-RecommenderSystem/tree/master/Dataset) is used to demonstrate the training and testing process.
The original data has more than 1 million users, as well as more than 60 million clicks, and the processed training and test data have 2,977,923 and 962,066 records respectively.
Each row contains several feature values, timestamps and two labels. The timestamp is used to divide the training and testing sets.
The click prediction (classification) and duration time prediction (regression) are two output targets. Original data examples are as follows:
```angular2html
+----------+----------+-------------------+----------+----------+-------------+-----+--------+------+-------+--------+--------+------+------+-------------------+-------+-------------+--------------------+
| user_id|article_id| expo_time|net_status|flush_nums|exop_position|click|duration|device| os|province| city| age|gender| ctime|img_num| cat_1| cat_2|
+----------+----------+-------------------+----------+----------+-------------+-----+--------+------+-------+--------+--------+------+------+-------------------+-------+-------------+--------------------+
|1000541010| 464467760|2021-06-30 09:57:14| 2| 0| 13| 1| 28|V2054A|Android|Shanghai|Shanghai|A_0_24|female|2021-06-29 14:46:43| 3|Entertainment| Entertainment/Stars|
|1000541010| 463850913|2021-06-30 09:57:14| 2| 0| 15| 0| 0|V2054A|Android|Shanghai|Shanghai|A_0_24|female|2021-06-27 22:29:13| 11| Fashions|Fashions/Female F...|
|1000541010| 464022440|2021-06-30 09:57:14| 2| 0| 17| 0| 0|V2054A|Android|Shanghai|Shanghai|A_0_24|female|2021-06-28 12:22:54| 7| Rural|Rural/Agriculture...|
|1000541010| 464586545|2021-06-30 09:58:31| 2| 1| 20| 0| 0|V2054A|Android|Shanghai|Shanghai|A_0_24|female|2021-06-29 13:25:06| 5|Entertainment| Entertainment/Stars|
|1000541010| 465352885|2021-07-03 18:13:03| 5| 0| 18| 0| 0|V2054A|Android|Shanghai|Shanghai|A_0_24|female|2021-07-02 10:43:51| 18|Entertainment| Entertainment/Stars|
+----------+----------+-------------------+----------+----------+-------------+-----+--------+------+-------+--------+--------+------+------+-------------------+-------+-------------+--------------------+
```

With the built-in high-level preprocessing operations in Friesian FeatureTable, we can easily perform distributed preprocessing for large-scale data.
The details of preprocessing can be found [here](https://github.com/intel-analytics/BigDL/blob/main/apps/wide-deep-recommendation/feature_engineering.ipynb). Examples of processed data are as follows:

```angular2html
+-------------------+-----+--------+-------------------+-----------+-----+-------+----------+----------+----------+-------------+------+---+--------+----+---+------+-----+
| expo_time|click|duration| ctime| img_num|cat_2|user_id|article_id|net_status|flush_nums|exop_position|device| os|province|city|age|gender|cat_1|
+-------------------+-----+--------+-------------------+-----------+-----+-------+----------+----------+----------+-------------+------+---+--------+----+---+------+-----+
|2021-06-30 09:57:14| 1| 28|2021-06-29 14:46:43|0.016574586| 60| 14089| 87717| 4| 73| 1003| 36| 2| 38| 308| 5| 1| 5|
|2021-06-30 09:57:14| 0| 0|2021-06-27 22:29:13| 0.06077348| 47| 14089| 35684| 4| 73| 43| 36| 2| 38| 308| 5| 1| 32|
|2021-06-30 09:57:14| 0| 0|2021-06-28 12:22:54|0.038674034| 157| 14089| 20413| 4| 73| 363| 36| 2| 38| 308| 5| 1| 20|
|2021-06-30 09:58:31| 0| 0|2021-06-29 13:25:06|0.027624309| 60| 14089| 15410| 4| 312| 848| 36| 2| 38| 308| 5| 1| 5|
|2021-07-03 18:13:03| 0| 0|2021-07-02 10:43:51| 0.09944751| 60| 14089| 81707| 2| 73| 313| 36| 2| 38| 308| 5| 1| 5|
+-------------------+-----+--------+-------------------+-----------+-----+-------+----------+----------+----------+-------------+------+---+--------+----+---+------+-----+
```
Data preprocessing command:
```bash
python data_processing.py \
--input_path /path/to/input/dataset \
--output_path /path/to/save/processed/dataset \
--cluster_mode local \
--executor_cores 8 \
--executor_memory 12g \
```
```bash
python data_processing.py \
--input_path /path/to/input/dataset \
--output_path /path/to/save/processed/dataset \
--cluster_mode yarn \
--executor_cores 8 \
--executor_memory 12g \
--num_executors 4 \
--driver_cores 2 \
--driver_memory 8g
```

__Options for data_processing:__
* `input_path`: The path to input dataset.
* `output_path`: The path to save processed dataset.
* `cluster_mode`: The cluster mode, such as local, yarn, standalone or spark-submit. Default to be local.
* `master`: The master url, only used when cluster mode is standalone. Default to be None.
* `executor_cores`: The executor core number. Default to be 8.
* `executor_memory`: The executor memory. Default to be 12g.
* `num_executors`: The number of executors. Default to be 4.
* `driver_cores`: The driver core number. Default to be 2.
* `driver_memory`: The driver memory. Default to be 8g.

__NOTE:__
When the *cluster_mode* is yarn, *input_path* and *output_path* should be HDFS paths.

## Train and test Multi-task models
After data preprocessing, the training command for MMoE or PLE model is as follows:
```bash
python run_multi_task.py \
--model_type mmoe\
--train_data_path /path/to/training/dataset \
--test_data_path /path/to/testing/dataset \
--model_save_path /path/to/save/the/trained/model \
--cluster_mode local \
--executor_cores 8 \
--executor_memory 12g \
```
```bash
python run_multi_task.py \
--model_type mmoe\
--train_data_path /path/to/training/dataset \
--test_data_path /path/to/testing/dataset \
--model_save_path /path/to/save/the/trained/model \
--cluster_mode yarn \
--executor_cores 8 \
--executor_memory 12g \
--num_executors 4 \
--driver_cores 2 \
--driver_memory 8g
```
Evaluate Results as follows:
```bash
python run_multi_task.py \
--model_type mmoe\
--test_data_path /path/to/testing/dataset \
--model_save_path /path/to/save/the/trained/model \
--cluster_mode local \
--executor_cores 8 \
--executor_memory 12g \
--num_executors 4 \
--driver_cores 2 \
--driver_memory 8g
```
Results:
```angular2html
1. For MMoE:
50/50 [==============================] - 85s 2s/step - loss: 5505.2607 - duration_loss: 5504.8799 - click_loss: 0.3727 - duration_mae: 30.[1520/1979] k_auc: 0.6574 - click_precision: 0.0000e+00 - click_recall: 0.0000e+00 - val_loss: 6546.5293 - val_duration_loss: 6546.0991 - val_click_loss: 0.4202 - val_duration_mae: 39.1881 - val_click_auc: 0.6486 - val_click_precision: 0.4036 - val_click_recall: 0.0012
(Worker pid=22945) Epoch 7: early stopping
Save model to path: ./save_model/mmoe_model.bin
3759/3759 [==============================] - 78s 20ms/step - loss: 6546.6997 - duration_loss: 6546.2734 - click_loss: 0.4202 - duration_mae: 39.1884 - click_auc: 0.6486 - click_precision: 0.4036 - click_recall: 0.0012
validation_loss 6546.69970703125
validation_duration_loss 6546.2734375
validation_click_loss 0.42016342282295227
validation_duration_mae 39.18841552734375
validation_click_auc 0.648556113243103
2. For PLE:
50/50 [==============================] - 87s 2s/step - loss: 6788.6426 - duration_loss: 6788.2168 - click_loss: 0.4217 - duration_mae: 38.3158 - click_auc: 0.6523 - click_precision: 0.3333 - click_recall: 9.7752e-04 - val_loss: 6610.4990 - val_duration_loss: 6610.0732 - val_click_loss: 0.4236 - val_duration_mae: 42.6656 - val_click_auc: 0.6482 - val_click_precision: 0.6667 - val_click_recall: 9.7058e-05
(Worker pid=13791) Epoch 4: early stopping
Save model to path: ./save_model/ple_model.bin
3753/3759 [============================>.] - ETA: 0s - loss: 6612.4531 - duration_loss: 6612.0410 - click_loss: 0.4236 - duration_mae: 42.6693 - click_auc: 0.6482 - click_precision: 0.6667 - click_recall: 9.7249e-05
validation_loss 6610.6552734375
validation_duration_loss 6610.244140625
validation_click_loss 0.4236340820789337
validation_duration_mae 42.66642379760742
validation_click_auc 0.6481693387031555
```

__Options for training and test:__
* `model_type`: The multi task model, mmoe or ple. Default to be mmoe.
* `train_data_path`: The path to training dataset.
* `test_data_path`: The path to testing dataset.
* `model_save_path`: The path to save model.
* `cluster_mode`: The cluster mode, such as local, yarn, standalone or spark-submit. Default to be local.
* `master`: The master url, only used when cluster mode is standalone. Default to be None.
* `executor_cores`: The executor core number. Default to be 8.
* `executor_memory`: The executor memory. Default to be 12g.
* `num_executors`: The number of executors. Default to be 4.
* `driver_cores`: The driver core number. Default to be 2.
* `driver_memory`: The driver memory. Default to be 8g.

__NOTE:__
When the *cluster_mode* is yarn, *train_data_path*, *test_data_path* ans *model_save_path* should be HDFS paths.
159 changes: 159 additions & 0 deletions python/friesian/example/multi_task/data_processing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
from argparse import ArgumentParser

from bigdl.friesian.feature import FeatureTable
from bigdl.orca import init_orca_context, stop_orca_context
from bigdl.dllib.utils.log4Error import invalidInputError


def transform(x):
# dealing with some abnormal data
if x == '上海':
return 0.0
elif isinstance(x, float):
return float(x)
else:
return float(eval(x))


def transform_cat_2(x):
return '-'.join(sorted(x.split('/')))


def read_and_split(data_input_path, sparse_int_features, sparse_string_features, dense_features):
header_names = ['user_id', 'article_id', 'expo_time', 'net_status', 'flush_nums',
'exop_position', 'click', 'duration', 'device', 'os', 'province', 'city',
'age', 'gender', 'ctime', 'img_num', 'cat_1', 'cat_2'
]
if data_input_path.endswith("csv"):
# data_pd = pd.read_csv(os.path.join(data_input_path, 'train_data.csv'), index_col=0,
# parse_dates=['expo_time'], low_memory=False)
# data_pd.to_csv('../train_data_new.csv', index=False, header=None)
tbl = FeatureTable.read_csv(data_input_path, header=False, names=header_names)
else:
tbl = FeatureTable.read_parquet(data_input_path)

print('The number of total data: ', tbl.size())

tbl = tbl.cast(sparse_int_features, 'string')
tbl = tbl.cast(dense_features, 'string')

# fill absence data
for feature in (sparse_int_features + sparse_string_features):
tbl = tbl.fillna("", feature)
tbl = tbl.fillna('0.0', 'img_num')

process_img_num = lambda x: transform(x)
process_cat_2 = lambda x: transform_cat_2(x)
tbl = tbl.apply("img_num", "img_num", process_img_num, "float")
tbl = tbl.apply("cat_2", "cat_2", process_cat_2, "string")

train_tbl = FeatureTable(tbl.df[tbl.df['expo_time'] < '2021-07-06'])
valid_tbl = FeatureTable(tbl.df[tbl.df['expo_time'] >= '2021-07-06'])
print('The number of train data: ', train_tbl.size())
print('The number of test data: ', valid_tbl.size())
return train_tbl, valid_tbl


def feature_engineering(train_tbl, valid_tbl, output_path, sparse_int_features,
sparse_string_features, dense_features):
import json
train_tbl, min_max_dict = train_tbl.min_max_scale(dense_features)
valid_tbl = valid_tbl.transform_min_max_scale(dense_features, min_max_dict)
cat_cols = sparse_string_features[-1:] + sparse_int_features + sparse_string_features[:-1]
for feature in cat_cols:
train_tbl, feature_idx = train_tbl.category_encode(feature)
valid_tbl = valid_tbl.encode_string(feature, feature_idx)
valid_tbl = valid_tbl.fillna(0, feature)
print("The class number of feature: {}/{}".format(feature, feature_idx.size()))
feature_idx.write_parquet(os.path.join(output_path, 'feature_maps'))
return train_tbl, valid_tbl


def parse_args():
parser = ArgumentParser(description="Transform dataset for multi task demo")
parser.add_argument('--input_path', type=str,
default='/path/to/input/dataset',
help='The path for input dataset')
parser.add_argument('--output_path', type=str, default='/path/to/save/processed/dataset',
help='The path for output dataset')
parser.add_argument('--cluster_mode', type=str, default="local",
help='The cluster mode, such as local, yarn, standalone or spark-submit.')
parser.add_argument('--master', type=str, default=None,
help='The master url, only used when cluster mode is standalone.')
parser.add_argument('--executor_cores', type=int, default=8,
help='The executor core number.')
parser.add_argument('--executor_memory', type=str, default="12g",
help='The executor memory.')
parser.add_argument('--num_executors', type=int, default=4,
help='The number of executors.')
parser.add_argument('--driver_cores', type=int, default=2,
help='The driver core number.')
parser.add_argument('--driver_memory', type=str, default="8g",
help='The driver memory.')
args_ = parser.parse_args()
return args_


if __name__ == '__main__':
args = parse_args()
if args.cluster_mode == "local":
sc = init_orca_context("local", cores=args.executor_cores,
memory=args.executor_memory)
elif args.cluster_mode == "standalone":
sc = init_orca_context("standalone", master=args.master,
cores=args.executor_cores, num_nodes=args.num_executors,
memory=args.executor_memory,
driver_cores=args.driver_cores,
driver_memory=args.driver_memory)
elif args.cluster_mode == "yarn":
sc = init_orca_context("yarn-client", cores=args.executor_cores,
num_nodes=args.num_executors, memory=args.executor_memory,
driver_cores=args.driver_cores, driver_memory=args.driver_memory)
elif args.cluster_mode == "spark-submit":
sc = init_orca_context("spark-submit")
else:
invalidInputError(False,
"cluster_mode should be one of 'local', 'yarn', 'standalone' and"
" 'spark-submit', but got " + args.cluster_mode)

sparse_int_features = [
'user_id', 'article_id',
'net_status', 'flush_nums',
'exop_position',
]
# put cat_2 at first bug
# put cat_1,cat_2 at first bug
sparse_string_features = [
'device', 'os', 'province',
'city', 'age',
'gender', 'cat_1', 'cat_2'
]
dense_features = ['img_num']

# read, reformat and split data
df_train, df_test = read_and_split(args.input_path, sparse_int_features,
sparse_string_features, dense_features)
train_tbl, valid_tbl = feature_engineering(df_train, df_test,
args.output_path,
sparse_int_features,
sparse_string_features, dense_features)
train_tbl.write_parquet(os.path.join(args.output_path, 'train_processed'))
valid_tbl.write_parquet(os.path.join(args.output_path, 'test_processed'))
stop_orca_context()
Loading

0 comments on commit 33c61ad

Please sign in to comment.