forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request PaddlePaddle#16 from ForFishes/lilong/moe
[MOE] add parallel_linear API
- Loading branch information
Showing
5 changed files
with
513 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/operators/parallel_linear_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class ParallelLinearOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
// global_input_buf | ||
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ParallelLinear"); | ||
// Weight | ||
OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "ParallelLinear"); | ||
// Bias | ||
OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "ParallelLinear"); | ||
|
||
// fwd_expert_count | ||
OP_INOUT_CHECK(ctx->HasInput("Expert_Count"), "Input", "Expert_Count", | ||
"ParallelLinear"); | ||
|
||
// global_output_buf | ||
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "expert_count", | ||
"Expert_Count"); | ||
|
||
auto x_dims = ctx->GetInputDim("X"); | ||
auto w_dims = ctx->GetInputDim("W"); | ||
auto b_dims = ctx->GetInputDim("Bias"); | ||
auto expert_count_dims = ctx->GetInputDim("Expert_Count"); | ||
|
||
PADDLE_ENFORCE_EQ(x_dims.size(), 2, | ||
platform::errors::InvalidArgument( | ||
"X's shape size should be 2, " | ||
"but received the size of Input(x)'s shape is %d", | ||
x_dims.size())); | ||
|
||
PADDLE_ENFORCE_EQ(w_dims.size(), 3, | ||
platform::errors::InvalidArgument( | ||
"X's shape size should be 3, " | ||
"but received the size of Input(w)'s shape is %d.", | ||
x_dims.size())); | ||
|
||
PADDLE_ENFORCE_EQ(b_dims.size(), 2, | ||
platform::errors::InvalidArgument( | ||
"X's shape size should be 2, " | ||
"but received the size of Input(bias)'s shape is %d.", | ||
x_dims.size())); | ||
|
||
PADDLE_ENFORCE_EQ(x_dims[1], w_dims[1], | ||
platform::errors::InvalidArgument( | ||
"X's shape[1] should be equal to W's shape[1], " | ||
"but received X's shape[1] = %d, W's shape[1] = %d.", | ||
x_dims[1], w_dims[1])); | ||
|
||
PADDLE_ENFORCE_EQ( | ||
expert_count_dims[0], w_dims[0], | ||
platform::errors::InvalidArgument( | ||
"Expert_Count's shape[0] should be equal to W's shape[0], " | ||
"but received Expert_Count's shape[0] = %d, W's shape[0] = %d.", | ||
expert_count_dims[0], w_dims[0])); | ||
|
||
PADDLE_ENFORCE_EQ( | ||
w_dims[2], b_dims[1], | ||
platform::errors::InvalidArgument( | ||
"W's shape[2] should be equal to Bias's shape[1], " | ||
"but received W's shape[1] = %d, Bias's shape[1] = %d.", | ||
w_dims[2], b_dims[1])); | ||
|
||
ctx->SetOutputDim("Out", {x_dims[0], w_dims[2]}); | ||
ctx->ShareLoD("X", /*->*/ "Out"); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); | ||
return framework::OpKernelType(data_type, ctx.device_context()); | ||
} | ||
}; | ||
|
||
class ParallelLinearOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor) Input tensor of batch_fc_op operator."); | ||
AddInput("W", "(Tensor) Input tensor of batch_fc_op operator."); | ||
AddInput("Bias", "(Tensor) Input tensor of batch_fc_op operator."); | ||
AddInput("Expert_Count", "(Tensor) Input tensor of batch_fc_op operator."); | ||
|
||
AddOutput("Out", "Output tensor of batch_fc_op operator."); | ||
AddComment(R"DOC( | ||
ParallelLinearOp Operator. | ||
Notice: It currently supports GPU device. | ||
This Op exists in contrib, which means that it is not shown to the public. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class ParallelLinearGradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE_EQ( | ||
ctx->HasInput("X"), true, | ||
platform::errors::InvalidArgument("Input should not be null")); | ||
PADDLE_ENFORCE_EQ( | ||
ctx->HasInput("W"), true, | ||
platform::errors::InvalidArgument("Input(W) should not be null")); | ||
|
||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); | ||
ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W")); | ||
ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->GetInputDim("Bias")); | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( | ||
ctx, framework::GradVarName("Out")), | ||
ctx.device_context()); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class ParallelLinearGradOpMaker : public framework::SingleGradOpMaker<T> { | ||
public: | ||
using framework::SingleGradOpMaker<T>::SingleGradOpMaker; | ||
|
||
protected: | ||
void Apply(GradOpPtr<T> op) const override { | ||
op->SetType("parallel_linear_grad"); | ||
|
||
op->SetInput("X", this->Input("X")); | ||
op->SetInput("W", this->Input("W")); | ||
op->SetInput("Bias", this->Input("Bias")); | ||
op->SetInput("Expert_Count", this->Input("Expert_Count")); | ||
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); | ||
|
||
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); | ||
op->SetOutput(framework::GradVarName("W"), this->InputGrad("W")); | ||
op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias")); | ||
op->SetAttrMap(this->Attrs()); | ||
} | ||
}; | ||
|
||
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ParallelLinearGradOpNoNeedBufferVarsInferer, | ||
"Bias"); | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OPERATOR(parallel_linear, ops::ParallelLinearOp, | ||
ops::ParallelLinearOpMaker, | ||
ops::ParallelLinearGradOpMaker<paddle::framework::OpDesc>, | ||
ops::ParallelLinearGradOpMaker<paddle::imperative::OpBase>); | ||
|
||
REGISTER_OPERATOR(parallel_linear_grad, ops::ParallelLinearGradOp, | ||
ops::ParallelLinearGradOpNoNeedBufferVarsInferer); | ||
|
||
REGISTER_OP_CPU_KERNEL( | ||
parallel_linear, | ||
ops::ParallelLinearOpCPUKernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::ParallelLinearOpCPUKernel<paddle::platform::CPUDeviceContext, double>); |
Oops, something went wrong.