-
Notifications
You must be signed in to change notification settings - Fork 8
Installation
To install SELF, you need
- A 2003 Compliant Fortran Compiler
- ROCm (4.1.0 or greater) and hipfort ( for GPU accelerated builds only)
- feq-parse
- FLAP
This documentation will walk you through installation of SELF and its dependencies.
- gfortran 10.2.0
- gfortran 9.4.0
For GPU accelerated builds of SELF, you will need to have ROCm installed. We recommend using ROCm 4.1.0 and greater. For more information on installing ROCm, check out the ROCm-Docs
On RHEL/Centos platforms ROCm can be installed via yum.
cat > /etc/yum.repos.d/rocm.repo <<EOL
[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/4.1.1
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOL
yum update -y
yum install -y rocm-dev
cat > /etc/profile.d/rocm.sh <<EOL
#!/bin/bash
export PATH=\${PATH}:/opt/rocm/bin
export LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:/opt/rocm/lib:/opt/rocm/lib64
EOL
If you are installing ROCm on a platform with an AMD GPU, you will also need to install rocm-dkms
yum install rocm-dkms
wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list
apt-get update -y
apt-get install rocm-dev
If you are installing ROCm on a platform with an AMD GPU, you will also need to install rocm-dkms
apt-get install rocm-dkms
After you install rocm-dev on any platform, you will need to build hipfort using the same Fortran compiler you plan to build SELF with.
As an example, the script below builds hipfort with gfortran that is currently in your PATH
and installs it in /opt/rocm
.
HIPFORT_ROOT=/opt/rocm
CWD=$(pwd)
git clone https://github.com/ROCmSoftwarePlatform/hipfort.git ${CWD}/hipfort
mkdir ${CWD}/hipfort/build
cd ${CWD}/hipfort/build
FC=$(which gfortran) cmake -DCMAKE_INSTALL_PREFIX=${HIPFORT_ROOT} ${CWD}/hipfort
make -j install
FEQPARSE_ROOT=/path/to/install/feq-parse
CWD=$(pwd)
git clone https://github.com/FluidNumerics/feq-parse.git ${CWD}/feq-parse
mkdir ${CWD}/feq-parse/build
cd ${CWD}/feq-parse/build
make clean
FC=$(which gfortran) cmake -DCMAKE_INSTALL_PREFIX=${FEWQ ${CWD}/feq-parse
make
make install
To install FLAP
FLAP_ROOT=/path/to/install/FLAP
CWD=$(pwd)
git clone --recurse-submodules https://github.com/szaghi/FLAP.git ${CWD}/FLAP
mkdir ${CWD}/FLAP/build
cd ${CWD}/FLAP/build
FC=$(which gfortran) FFLAGS=-cpp cmake -DCMAKE_INSTALL_PREFIX=${FLAP_ROOT} ${CWD}/FLAP
make
make install
To build SELF for GPU accelerated platforms, you will need to set the HIPFORT_GPU
, and HIP_PLATFORM
environment variables. Additionally, FC
must be set to hipfc
and HIPFORT_COMPILER
must be set to the desired host-side Fortran compiler (e.g. gfortran).
The list below provides some common settings for GPU accelerated platforms
- AMD MI50 :
HIPFORT_GPU=gfx906 HIP_PLATFORM=amd
- AMD MI100 :
HIPFORT_GPU=gfx908 HIP_PLATFORM=amd
- Nvidia Tesla P100 :
HIPFORT_GPU=sm_62 HIP_PLATFORM=nvidia
- Nvidia Tesla V100 :
HIPFORT_GPU=sm_72 HIP_PLATFORM=nvidia
- Nvidia Tesla A100 :
HIPFORT_GPU=sm_80 HIP_PLATFORM=nvidia
If you are using ROCm versions > 3.6 and < 4.1, HIP_PLATFORM=hcc
for AMD GPUs and HIP_PLATFORM=nvcc
for Nvidia GPUs
The example below shows how to install v0.0.1-alpha
of SELF, with single precision floating point arithmetic for use on AMD MI100 GPUs.
SELF_ROOT=/path/to/install/SELF
CWD=$(pwd)
git clone https://github.com/FluidNumerics/SELF.git ${CWD}/SELF
cd ${CWD}/SELF
git checkout v0.0.1-alpha -b v0.0.1-alpha
SELF_PREFIX=${SELF_ROOT} \
PREC=single \
BUILD=release \
FC=hipfc \
HIPFORT_COMPILER=gfortran \
HIPFORT_GPU=gfx908 \
HIP_PLATFORM=amd \
ROCM_DIR=/opt/rocm \
SELF_FEQPARSE_LIBS="-L${FEQPARSE_ROOT}/lib -lfeqparse" \
SELF_FEQPARSE_INC="-I${FEQPARSE_ROOT}/include" \
SELF_FLAP_LIBS="-L${FLAP_ROOT}/lib64 -lFLAP -lFACE -lPENF" \
SELF_FLAP_INC="-I${FLAP_ROOT}/include/FLAP -I${FLAP_ROOT}/include/PENF -I${FLAP_ROOT}/include/FACE" \
make install