Skip to content

Farhan-Faisal/STM_N-Back_Training_Aphasia

Repository files navigation

______________________________________________________________

  • Programmer: Farhan Bin Faisal
  • Files: preprocess.ipynb, wordListMaker.m, postWuggy.ipynb, generateConditions.ipynb
  • Date Created: 10 November 2022
  • Meltzer Lab

______________________________________________________________

RESEARCH POSTER

NBack_Poster

______________________________________________________________

EXPERIMENT PARADIGM

The NBAck Training paradigm was programmed in JavaScript (using PsychoJS) and hosted on Pavlovia. A trial run can be accessed here. Please input the following credentials

  • session: 1
  • participantID: 19995

______________________________________________________________

STIMULY GENERATION PIPELINE

1.) preprocess.ipynb

  • Loads word csv file into a pandas dataframe
  • Filters rows for frequency (4.0 Zipfvalue < 5.0)
  • Gets syllables of each word
    • Uses cmu_dict from nltk
  • Filters rows for syllables (1 < syllable < 2)
  • Replaces each word with its corresponding lemma
    • Uses WordNetLemmatizer for this
  • Discards rows not found in cmudict
  • Discards profane words and names
  • Formats dataframe into SOS-compatible input
  • Outputs dataframe as a tab delimited txt file
    • File Named "sos_input.txt"

______________________________________________________________

2.) wordListMaker.m

  • Uses SOS to make 18 lists of 10 words each
  • Lists matched on ZipfValue and syllables
    • Used soft constraints for this
    • Used hard constraints to floor syllable count and frequency
  • Lists can be found in the folder "wordLists"

______________________________________________________________

3. a) wuggy/postSOS.ipynb

  • Generates nonword lists for every wordList
  • nonWordLists outputted to folder nonWordList
  • Prints filenames of files which contain words that could not be converted to a nonWord automatically
    • Need to generate those pseudowords manually

______________________________________________________________

3. b) Wuggy || Generate nonWords manually

  • Download from http://crr.ugent.be/programs-data/wuggy
  • Settings used:
    • Orthographic English
    • Match syllable length
    • Match word length
    • Match transition frequency
    • Match 2 out of 3 segments
  • Manually pass the words that could not be found in the lexicon through Wuggy

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published