Skip to content

Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Notifications You must be signed in to change notification settings

EricZgw/pixel_link

 
 

Repository files navigation

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai.

Installation

Clone the repo

git clone --recursive [email protected]:ZJULearning/pixel_link.git

Denote the root directory path of pixel_link by ${pixel_link_root}.

Add the path of ${pixel_link_root}/pylib/src to your PYTHONPATH:

export PYTHONPATH=${path_to_pixel_link}/pylib/src:$PYTHONPATH

Prerequisites

(Only tested on) Ubuntu14.04 and 16.04 with:

  • Python 2.7
  • Tensorflow-gpu >= 1.1
  • opencv2
  • setproctitle
  • matplotlib

Anaconda is recommended to for an easier installation:

  1. Install Anaconda
  2. Create and activate the required virtual environment by:
conda env create --file pixel_link_env.txt
source activate pixel_link

Testing

Download the pretrained model

Unzip the downloaded model. It contains 4 files:

  • config.py
  • model.ckpt-xxx.data-00000-of-00001
  • model.ckpt-xxx.index
  • model.ckpt-xxx.meta

Denote their parent directory as ${model_path}.

Test on ICDAR2015

The reported results on ICDAR2015 are:

Model Recall Precision F-mean
PixelLink+VGG16 2s 82.0 85.5 83.7
PixelLink+VGG16 4s 81.7 82.9 82.3

Suppose you have downloaded the ICDAR2015 dataset, execute the following commands to test the model on ICDAR2015:

cd ${pixel_link_root}
./scripts/test.sh ${GPU_ID} ${model_path}/model.ckpt-xxx ${path_to_icdar2015}/ch4_test_images

For example:

./scripts/test.sh 3 ~/temp/conv3_3/model.ckpt-38055 ~/dataset/ICDAR2015/Challenge4/ch4_test_images

The program will create a zip file of detection results, which can be submitted to the ICDAR2015 server directly. The detection results can be visualized via scripts/vis.sh.

Here are some samples: ./samples/img_333_pred.jpg ./samples/img_249_pred.jpg

Test on any images

Put the images to be tested in a single directory, i.e., ${image_dir}. Then:

cd ${pixel_link_root}
./scripts/test_any.sh ${GPU_ID} ${model_path}/model.ckpt-xxx ${image_dir}

For example:

 ./scripts/test_any.sh 3 ~/temp/conv3_3/model.ckpt-38055 ~/dataset/ICDAR2015/Challenge4/ch4_training_images

The program will visualize the detection results directly on images. If the detection result is not satisfying, try to:

  1. Adjust the inference parameters like eval_image_width, eval_image_height, pixel_conf_threshold, link_conf_threshold.
  2. Or train your own model.

Training

Converting the dataset to tfrecords files

Scripts for converting ICDAR2015 and SynthText datasets have been provided in the datasets directory. It not hard to write a converting script for your own dataset.

Train your own model

  • Modify scripts/train.sh to configure your dataset name and dataset path like:
DATASET=icdar2015
DATASET_DIR=$HOME/dataset/pixel_link/icdar2015
  • Start training
./scripts/train.sh ${GPU_IDs} ${IMG_PER_GPU}

For example, ./scripts/train.sh 0,1,2 8.

The existing training strategy in scripts/train.sh is configured for icdar2015, modify it if necessary. A lot of training or model options are available in config.py, try it yourself if you are interested.

Acknowlegement

About

Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.6%
  • Shell 1.4%