Skip to content

Commit

Permalink
Stable diffusion 3.5 support. (huggingface#2578)
Browse files Browse the repository at this point in the history
* Stable diffusion 3.5 support.

* Clippy fixes.

* CFG fix.

* Remove some unnecessary clones.

* Avoid duplicating some of the code.
  • Loading branch information
LaurentMazare authored and EricLBuehler committed Nov 26, 2024
1 parent 5c561ab commit 81364b3
Show file tree
Hide file tree
Showing 5 changed files with 209 additions and 85 deletions.
50 changes: 48 additions & 2 deletions candle-examples/examples/stable-diffusion-3/clip.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
use anyhow::{Error as E, Ok, Result};
use candle::{DType, IndexOp, Module, Tensor, D};
use candle_transformers::models::{stable_diffusion, t5};
use std::path::PathBuf;
use tokenizers::tokenizer::Tokenizer;

struct ClipWithTokenizer {
Expand Down Expand Up @@ -130,6 +131,53 @@ pub struct StableDiffusion3TripleClipWithTokenizer {
}

impl StableDiffusion3TripleClipWithTokenizer {
pub fn new_split(
clip_g_file: &PathBuf,
clip_l_file: &PathBuf,
t5xxl_file: &PathBuf,
device: &candle::Device,
) -> Result<Self> {
let vb_clip_g = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[clip_g_file], DType::F16, device)?
};
let vb_clip_l = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[clip_l_file], DType::F16, device)?
};
let vb_t5 = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[t5xxl_file], DType::F32, device)?
};
let max_position_embeddings = 77usize;
let clip_l = ClipWithTokenizer::new(
vb_clip_l,
stable_diffusion::clip::Config::sdxl(),
"openai/clip-vit-large-patch14",
max_position_embeddings,
)?;

let text_projection =
candle_nn::linear_no_bias(1280, 1280, vb_clip_g.pp("text_projection"))?;

let clip_g = ClipWithTokenizer::new(
vb_clip_g,
stable_diffusion::clip::Config::sdxl2(),
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
max_position_embeddings,
)?;

// Current T5 implementation does not support fp16, so we use fp32 VarBuilder for T5.
// This is a temporary workaround until the T5 implementation is updated to support fp16.
// Also see:
// https://github.com/huggingface/candle/issues/2480
// https://github.com/huggingface/candle/pull/2481
let t5 = T5WithTokenizer::new(vb_t5, max_position_embeddings)?;
Ok(Self {
clip_l,
clip_g,
clip_g_text_projection: text_projection,
t5,
})
}

pub fn new(vb_fp16: candle_nn::VarBuilder, vb_fp32: candle_nn::VarBuilder) -> Result<Self> {
let max_position_embeddings = 77usize;
let clip_l = ClipWithTokenizer::new(
Expand Down Expand Up @@ -158,7 +206,6 @@ impl StableDiffusion3TripleClipWithTokenizer {
// https://github.com/huggingface/candle/issues/2480
// https://github.com/huggingface/candle/pull/2481
let t5 = T5WithTokenizer::new(vb_fp32.pp("t5xxl.transformer"), max_position_embeddings)?;

Ok(Self {
clip_l,
clip_g,
Expand Down Expand Up @@ -195,7 +242,6 @@ impl StableDiffusion3TripleClipWithTokenizer {
.encode_text_to_embedding(prompt, device)?
.to_dtype(DType::F16)?;
let context = Tensor::cat(&[&clip_embeddings_concat, &t5_embeddings], D::Minus2)?;

Ok((context, y))
}
}
198 changes: 117 additions & 81 deletions candle-examples/examples/stable-diffusion-3/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,25 @@ use crate::vae::{build_sd3_vae_autoencoder, sd3_vae_vb_rename};
use anyhow::{Ok, Result};
use clap::Parser;

#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "3-medium")]
V3Medium,
#[value(name = "3.5-large")]
V3_5Large,
#[value(name = "3.5-large-turbo")]
V3_5LargeTurbo,
}

impl Which {
fn is_3_5(&self) -> bool {
match self {
Self::V3Medium => false,
Self::V3_5Large | Self::V3_5LargeTurbo => true,
}
}
}

#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Args {
Expand All @@ -30,10 +49,6 @@ struct Args {
#[arg(long)]
cpu: bool,

/// The GPU device ID to use.
#[arg(long, default_value_t = 0)]
gpu_device_id: usize,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
Expand All @@ -50,13 +65,17 @@ struct Args {
#[arg(long, default_value_t = 1024)]
width: usize,

/// The model to use.
#[arg(long, default_value = "3-medium")]
which: Which,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 28)]
num_inference_steps: usize,
#[arg(long)]
num_inference_steps: Option<usize>,

// CFG scale.
#[arg(long, default_value_t = 4.0)]
cfg_scale: f64,
#[arg(long)]
cfg_scale: Option<f64>,

// Time shift factor (alpha).
#[arg(long, default_value_t = 3.0)]
Expand All @@ -68,20 +87,13 @@ struct Args {
}

fn main() -> Result<()> {
let args = Args::parse();
// Your main code here
run(args)
}

fn run(args: Args) -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let Args {
prompt,
uncond_prompt,
cpu,
gpu_device_id,
tracing,
use_flash_attn,
height,
Expand All @@ -90,7 +102,8 @@ fn run(args: Args) -> Result<()> {
cfg_scale,
time_shift,
seed,
} = args;
which,
} = Args::parse();

let _guard = if tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
Expand All @@ -100,87 +113,110 @@ fn run(args: Args) -> Result<()> {
None
};

let device = if cpu {
candle::Device::Cpu
} else if candle::utils::cuda_is_available() {
candle::Device::new_cuda(gpu_device_id)?
} else if candle::utils::metal_is_available() {
candle::Device::new_metal(gpu_device_id)?
} else {
candle::Device::Cpu
let device = candle_examples::device(cpu)?;
let default_inference_steps = match which {
Which::V3_5Large => 28,
Which::V3_5LargeTurbo => 4,
Which::V3Medium => 28,
};
let num_inference_steps = num_inference_steps.unwrap_or(default_inference_steps);
let default_cfg_scale = match which {
Which::V3_5Large => 4.0,
Which::V3_5LargeTurbo => 1.0,
Which::V3Medium => 4.0,
};
let cfg_scale = cfg_scale.unwrap_or(default_cfg_scale);

let api = hf_hub::api::sync::Api::new()?;
let sai_repo = {
let name = "stabilityai/stable-diffusion-3-medium";
api.repo(hf_hub::Repo::model(name.to_string()))
};
let model_file = sai_repo.get("sd3_medium_incl_clips_t5xxlfp16.safetensors")?;
let vb_fp16 = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F16, &device)?
};
let (mmdit_config, mut triple, vb) = if which.is_3_5() {
let sai_repo = {
let name = match which {
Which::V3_5Large => "stabilityai/stable-diffusion-3.5-large",
Which::V3_5LargeTurbo => "stabilityai/stable-diffusion-3.5-large-turbo",
Which::V3Medium => unreachable!(),
};
api.repo(hf_hub::Repo::model(name.to_string()))
};
let clip_g_file = sai_repo.get("text_encoders/clip_g.safetensors")?;
let clip_l_file = sai_repo.get("text_encoders/clip_l.safetensors")?;
let t5xxl_file = sai_repo.get("text_encoders/t5xxl_fp16.safetensors")?;
let model_file = {
let model_file = match which {
Which::V3_5Large => "sd3.5_large.safetensors",
Which::V3_5LargeTurbo => "sd3.5_large_turbo.safetensors",
Which::V3Medium => unreachable!(),
};
sai_repo.get(model_file)?
};
let triple = StableDiffusion3TripleClipWithTokenizer::new_split(
&clip_g_file,
&clip_l_file,
&t5xxl_file,
&device,
)?;
let vb = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[model_file], DType::F16, &device)?
};
(MMDiTConfig::sd3_5_large(), triple, vb)
} else {
let sai_repo = {
let name = "stabilityai/stable-diffusion-3-medium";
api.repo(hf_hub::Repo::model(name.to_string()))
};
let model_file = sai_repo.get("sd3_medium_incl_clips_t5xxlfp16.safetensors")?;
let vb_fp16 = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(&[&model_file], DType::F16, &device)?
};

let (context, y) = {
let vb_fp32 = unsafe {
candle_nn::VarBuilder::from_mmaped_safetensors(
&[model_file.clone()],
DType::F32,
&device,
)?
candle_nn::VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)?
};
let mut triple = StableDiffusion3TripleClipWithTokenizer::new(
let triple = StableDiffusion3TripleClipWithTokenizer::new(
vb_fp16.pp("text_encoders"),
vb_fp32.pp("text_encoders"),
)?;
let (context, y) = triple.encode_text_to_embedding(prompt.as_str(), &device)?;
let (context_uncond, y_uncond) =
triple.encode_text_to_embedding(uncond_prompt.as_str(), &device)?;
(
Tensor::cat(&[context, context_uncond], 0)?,
Tensor::cat(&[y, y_uncond], 0)?,
)
};

let x = {
let mmdit = MMDiT::new(
&MMDiTConfig::sd3_medium(),
use_flash_attn,
vb_fp16.pp("model.diffusion_model"),
)?;

if let Some(seed) = seed {
device.set_seed(seed)?;
}
let start_time = std::time::Instant::now();
let x = sampling::euler_sample(
&mmdit,
&y,
&context,
num_inference_steps,
cfg_scale,
time_shift,
height,
width,
)?;
let dt = start_time.elapsed().as_secs_f32();
println!(
"Sampling done. {num_inference_steps} steps. {:.2}s. Average rate: {:.2} iter/s",
dt,
num_inference_steps as f32 / dt
);
x
(MMDiTConfig::sd3_medium(), triple, vb_fp16)
};
let (context, y) = triple.encode_text_to_embedding(prompt.as_str(), &device)?;
let (context_uncond, y_uncond) =
triple.encode_text_to_embedding(uncond_prompt.as_str(), &device)?;
let context = Tensor::cat(&[context, context_uncond], 0)?;
let y = Tensor::cat(&[y, y_uncond], 0)?;

let mmdit = MMDiT::new(
&mmdit_config,
use_flash_attn,
vb.pp("model.diffusion_model"),
)?;

if let Some(seed) = seed {
device.set_seed(seed)?;
}
let start_time = std::time::Instant::now();
let x = sampling::euler_sample(
&mmdit,
&y,
&context,
num_inference_steps,
cfg_scale,
time_shift,
height,
width,
)?;
let dt = start_time.elapsed().as_secs_f32();
println!(
"Sampling done. {num_inference_steps} steps. {:.2}s. Average rate: {:.2} iter/s",
dt,
num_inference_steps as f32 / dt
);

let img = {
let vb_vae = vb_fp16
.clone()
.rename_f(sd3_vae_vb_rename)
.pp("first_stage_model");
let vb_vae = vb.rename_f(sd3_vae_vb_rename).pp("first_stage_model");
let autoencoder = build_sd3_vae_autoencoder(vb_vae)?;

// Apply TAESD3 scale factor. Seems to be significantly improving the quality of the image.
// https://github.com/comfyanonymous/ComfyUI/blob/3c60ecd7a83da43d694e26a77ca6b93106891251/nodes.py#L721-L723
autoencoder.decode(&((x.clone() / 1.5305)? + 0.0609)?)?
autoencoder.decode(&((x / 1.5305)? + 0.0609)?)?
};
let img = ((img.clamp(-1f32, 1f32)? + 1.0)? * 127.5)?.to_dtype(candle::DType::U8)?;
candle_examples::save_image(&img.i(0)?, "out.jpg")?;
Expand Down
2 changes: 1 addition & 1 deletion candle-examples/examples/stable-diffusion-3/sampling.rs
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ pub fn euler_sample(

let timestep = (*s_curr) * 1000.0;
let noise_pred = mmdit.forward(
&Tensor::cat(&[x.clone(), x.clone()], 0)?,
&Tensor::cat(&[&x, &x], 0)?,
&Tensor::full(timestep as f32, (2,), x.device())?.contiguous()?,
y,
context,
Expand Down
14 changes: 14 additions & 0 deletions candle-transformers/src/models/mmdit/model.rs
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,20 @@ impl Config {
frequency_embedding_size: 256,
}
}

pub fn sd3_5_large() -> Self {
Self {
patch_size: 2,
in_channels: 16,
out_channels: 16,
depth: 38,
head_size: 64,
adm_in_channels: 2048,
pos_embed_max_size: 192,
context_embed_size: 4096,
frequency_embedding_size: 256,
}
}
}

pub struct MMDiT {
Expand Down
Loading

0 comments on commit 81364b3

Please sign in to comment.