Skip to content
forked from HuaWeitong/REDE

Code for "REDE: End-to-end Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination"

Notifications You must be signed in to change notification settings

EquilibriaW/REDE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

REDE

Overview

This is an implementation of the paper "REDE: End-to-end Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination". [paper] [video]

Dependencies

  • Python 3.8
  • PyTorch 1.4
  • CUDA 10.0

Installation

  1. Set up python environment
pip install -r requirement.txt
  1. Compile KNN
cd lib/KNN_CUDA
$ROOT=/path/to/REDE
export PATH=$ROOT/lib/KNN_CUDA:$PATH
make && make install
  1. Compile SVD
cd lib/torch-batch-svd
python setup.py install
  1. Compile FPS
cd lib/fps
python setup.py install

Datasets

Prepare the dataset

Download the preprocessed LineMOD dataset and supplement (including fuse data, keypoints and script for pose format conversion), put supplement into Linemod_preprocessed and run gt_to_npy.py.

Download the preprocessed Occlusion LineMOD dataset.

Download the YCB_Video Dataset.

Create the soft link

ln -s path/to/LineMOD datasets/linemod/data
ln -s path/to/Occlusion_LineMOD datasets/occlusion_linemod/data
ln -s path/to/YCB datasets/ycb/data

Compute FPS keypoints

python lib/fps/get_fps.py

Training

  • LineMOD:
python tools/train_linemod.py --obj_id 1
  • YCB:
python tools/train_ycb.py

Evaluation

You can download the trained checkpoints from Link (LineMOD, YCB) and put them to checkpoints.

  • LineMOD:
python tools/eval_linemod.py
  • Occlusion LineMOD:
python tools/eval_occ.py
  • YCB:
python tools/eval_ycb.py

About

Code for "REDE: End-to-end Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 84.9%
  • C++ 9.7%
  • Cuda 5.1%
  • Other 0.3%