The goal of emodnet.wfs is to allow interrogation of and access to EMODnet’s, European Marine Observation and Data Network, geographic vector data in R through the EMODnet Web Feature Services. Web Feature services (WFS) represent a change in the way geographic information is created, modified and exchanged on the Internet and offer direct fine-grained access to geographic information at the feature and feature property level. Features are representation of geographic entities, such as a coastlines, marine protected areas, offshore platforms, or fishing areas. In WFS, features have geometry (spatial information) and attributes (descriptive data). emodnet.wfs aims at offering an user-friendly interface to this rich data.
You can install the development version of emodnet.wfs from GitHub with:
# install.packages("pak")
pak::pak("EMODnet/emodnet.wfs")
If you want to avoid reading messages from emodnet.wfs such as “WFS
client created successfully”, set the "emodnet.wfs.quiet"
option to
TRUE
.
options("emodnet.wfs.quiet" = TRUE)
The use of the EMODnet Web Feature Services is not subjet to rate limiting at the moment.
The emodnet.wfs is designed to be compatible with the modern R
geospatial stack, in particular output geospatial objects are
sf
objects, that is to say, a
tibble with a geometry list-column.
For users not familiar yet with geospatial data in R, we recommend the following resources:
-
Spatial Data Science With Applications in R by Edzer Pebesma and Roger Bivand.
-
Geocomputation with R by Robin Lovelace, Jakub Nowosad and Jannes Muenchow.
In the documentation we assume a basic familiarity with spatial data: knowing about coordinates and about projections / coordinate reference systems (CRS).
All available data sources, called services, are contained in the
tibble returned by emodnet_wfs()
.
library(emodnet.wfs)
services <- emodnet_wfs()
class(services)
#> [1] "tbl_df" "tbl" "data.frame"
names(services)
#> [1] "emodnet_thematic_lot" "service_name" "service_url"
services[, c("emodnet_thematic_lot", "service_name")]
#> # A tibble: 17 × 2
#> emodnet_thematic_lot service_name
#> <chr> <chr>
#> 1 EMODnet Bathymetry bathymetry
#> 2 EMODnet Biology biology
#> 3 EMODnet Biology biology_occurrence_data
#> 4 EMODnet Chemistry chemistry_cdi_data_discovery_and_access_service
#> 5 EMODnet Chemistry chemistry_cdi_distribution_observations_per_categor…
#> 6 EMODnet Chemistry chemistry_contaminants
#> 7 EMODnet Chemistry chemistry_marine_litter
#> 8 EMODnet Geology geology_coastal_behavior
#> 9 EMODnet Geology geology_events_and_probabilities
#> 10 EMODnet Geology geology_marine_minerals
#> 11 EMODnet Geology geology_sea_floor_bedrock
#> 12 EMODnet Geology geology_seabed_substrate_maps
#> 13 EMODnet Geology geology_submerged_landscapes
#> 14 EMODnet Human Activities human_activities
#> 15 EMODnet Physics physics
#> 16 EMODnet Seabed Habitats seabed_habitats_general_datasets_and_products
#> 17 EMODnet Seabed Habitats seabed_habitats_individual_habitat_map_and_model_da…
EMODnet data covers several disciplines organized in 7 thematic lots: bathymetry, biology, chemistry, geology, human activities, physics, seabed habitats. Some thematic lots organize their data in more than one data source or service.
To explore available services you can use View()
or your usual way to
explore data.frames
.
A WFS service client is responsible for sending requests to a WFS server and processing the responses to retrieve, display, or analyze geospatial features. As such, initialising a client is the first step to interacting with an EMODnet Web Feature Services.
Specify the service using the service
argument.
wfs_bio <- emodnet_init_wfs_client(service = "biology")
#> Loading ISO 19139 XML schemas...
#> Loading ISO 19115 codelists...
#> ✔ WFS client created successfully
#> ℹ Service: "https://geo.vliz.be/geoserver/Emodnetbio/wfs"
#> ℹ Version: "2.0.0"
wfs_bio
#> <WFSClient>
#> ....|-- url: https://geo.vliz.be/geoserver/Emodnetbio/wfs
#> ....|-- version: 2.0.0
#> ....|-- capabilities <WFSCapabilities>
In the context of a Web Feature Service (WFS), a layer refers to a logical grouping of geographic features that share the same schema (i.e., the same feature type, geometry, and attributes). Layers are the units of data that clients can query, retrieve, and manipulate through a WFS.
You can access information (metadata) about each layer available from an
EMODnet WFS with emodnet_get_wfs_info()
emodnet_get_wfs_info(service = "biology")
#> ✔ WFS client created successfully
#> ℹ Service: "https://geo.vliz.be/geoserver/Emodnetbio/wfs"
#> ℹ Version: "2.0.0"
#> # A tibble: 36 × 9
#> # Rowwise:
#> data_source service_name service_url layer_name title abstract class format
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Coral … WFSF… sf
#> 2 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Coral … WFSF… sf
#> 3 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Cymodo… WFSF… sf
#> 4 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 5 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 6 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 7 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 8 emodnet_wfs biology https://geo.… mediseh_h… EMOD… "Haloph… WFSF… sf
#> 9 emodnet_wfs biology https://geo.… mediseh_m… EMOD… "Maërl … WFSF… sf
#> 10 emodnet_wfs biology https://geo.… mediseh_m… EMOD… "Maërl … WFSF… sf
#> # ℹ 26 more rows
#> # ℹ 1 more variable: layer_namespace <chr>
or you can pass a wfs client object.
emodnet_get_wfs_info(wfs_bio)
#> # A tibble: 36 × 9
#> # Rowwise:
#> data_source service_name service_url layer_name title abstract class format
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Coral … WFSF… sf
#> 2 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Coral … WFSF… sf
#> 3 emodnet_wfs biology https://geo.… mediseh_c… EMOD… "Cymodo… WFSF… sf
#> 4 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 5 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 6 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 7 emodnet_wfs biology https://geo.… Species_g… EMOD… "This d… WFSF… sf
#> 8 emodnet_wfs biology https://geo.… mediseh_h… EMOD… "Haloph… WFSF… sf
#> 9 emodnet_wfs biology https://geo.… mediseh_m… EMOD… "Maërl … WFSF… sf
#> 10 emodnet_wfs biology https://geo.… mediseh_m… EMOD… "Maërl … WFSF… sf
#> # ℹ 26 more rows
#> # ℹ 1 more variable: layer_namespace <chr>
You can also get info for specific layers from wfs object:
layers <- c("mediseh_zostera_m_pnt", "mediseh_posidonia_nodata")
emodnet_get_layer_info(wfs = wfs_bio, layers = layers)
#> # A tibble: 2 × 9
#> # Rowwise:
#> data_source service_name service_url layer_name title abstract class format
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 emodnet_wfs https://geo.vl… biology mediseh_p… EMOD… "Coastl… WFSF… sf
#> 2 emodnet_wfs https://geo.vl… biology mediseh_z… EMOD… "Zoster… WFSF… sf
#> # ℹ 1 more variable: layer_namespace <chr>
Finally, you can get details on all available services and layers from the server
emodnet_get_all_wfs_info()
You can extract layers directly from a wfs
object using layer names.
All layers are downloaded as sf
objects and output as a list with a
named element for each layer requested. The argument simplify = TRUE
stack all the layers in one single tibble, if possible (for instance if
all column names are the same, otherwise it fails).
By default, emodnet_get_layers()
returns a list of sf objects, one per
layer.
emodnet_get_layers(wfs = wfs_bio, layers = layers)
#> $mediseh_zostera_m_pnt
#> Simple feature collection with 54 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -4.167154 ymin: 33.07783 xmax: 15.35766 ymax: 45.72451
#> Geodetic CRS: WGS 84
#> First 10 features:
#> gml_id id country the_geom
#> 1 mediseh_zostera_m_pnt.1 0 Spagna POINT (-2.61314 36.71681)
#> 2 mediseh_zostera_m_pnt.2 0 Spagna POINT (-3.846598 36.75127)
#> 3 mediseh_zostera_m_pnt.3 0 Spagna POINT (-3.957785 36.72266)
#> 4 mediseh_zostera_m_pnt.4 0 Spagna POINT (-4.039712 36.74217)
#> 5 mediseh_zostera_m_pnt.5 0 Spagna POINT (-4.100182 36.72331)
#> 6 mediseh_zostera_m_pnt.6 0 Spagna POINT (-4.167154 36.71226)
#> 7 mediseh_zostera_m_pnt.7 0 Spagna POINT (-1.268366 37.55796)
#> 8 mediseh_zostera_m_pnt.8 0 Francia POINT (4.84864 43.37637)
#> 9 mediseh_zostera_m_pnt.9 0 Italia POINT (13.71831 45.70017)
#> 10 mediseh_zostera_m_pnt.10 0 Italia POINT (13.16378 45.72451)
#>
#> $mediseh_posidonia_nodata
#> Simple feature collection with 465 features and 3 fields
#> Geometry type: MULTICURVE
#> Dimension: XY
#> Bounding box: xmin: -2.1798 ymin: 30.26623 xmax: 34.60767 ymax: 45.47668
#> Geodetic CRS: WGS 84
#> First 10 features:
#> gml_id id km the_geom
#> 1 mediseh_posidonia_nodata.1 0 291.503233 MULTICURVE (LINESTRING (27....
#> 2 mediseh_posidonia_nodata.2 0 75.379502 MULTICURVE (LINESTRING (23....
#> 3 mediseh_posidonia_nodata.3 0 38.627764 MULTICURVE (LINESTRING (22....
#> 4 mediseh_posidonia_nodata.4 0 110.344802 MULTICURVE (LINESTRING (19....
#> 5 mediseh_posidonia_nodata.13 0 66.997461 MULTICURVE (LINESTRING (9.1...
#> 6 mediseh_posidonia_nodata.14 0 18.090640 MULTICURVE (LINESTRING (9.7...
#> 7 mediseh_posidonia_nodata.15 0 16.618978 MULTICURVE (LINESTRING (9.8...
#> 8 mediseh_posidonia_nodata.16 0 1.913773 MULTICURVE (LINESTRING (10....
#> 9 mediseh_posidonia_nodata.83 0 2.173447 MULTICURVE (LINESTRING (15....
#> 10 mediseh_posidonia_nodata.84 0 2.817453 MULTICURVE (LINESTRING (15....
You can change the output Coordinate Reference System (CRS), which
defines how geographic data is mapped to the Earth’s surface, through
the argument crs
.
emodnet_get_layers(wfs = wfs_bio, layers = layers, crs = 3857)
#> ℹ crs transformed to 3857.
#> ℹ crs transformed to 3857.
#> $mediseh_zostera_m_pnt
#> Simple feature collection with 54 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -463885.4 ymin: 3905639 xmax: 1709607 ymax: 5736311
#> Projected CRS: WGS 84 / Pseudo-Mercator
#> First 10 features:
#> gml_id id country the_geom
#> 1 mediseh_zostera_m_pnt.1 0 Spagna POINT (-290893.4 4399707)
#> 2 mediseh_zostera_m_pnt.2 0 Spagna POINT (-428201.3 4404494)
#> 3 mediseh_zostera_m_pnt.3 0 Spagna POINT (-440578.6 4400520)
#> 4 mediseh_zostera_m_pnt.4 0 Spagna POINT (-449698.6 4403229)
#> 5 mediseh_zostera_m_pnt.5 0 Spagna POINT (-456430.1 4400610)
#> 6 mediseh_zostera_m_pnt.6 0 Spagna POINT (-463885.4 4399075)
#> 7 mediseh_zostera_m_pnt.7 0 Spagna POINT (-141193.9 4517168)
#> 8 mediseh_zostera_m_pnt.8 0 Francia POINT (539748.1 5369436)
#> 9 mediseh_zostera_m_pnt.9 0 Italia POINT (1527115 5732431)
#> 10 mediseh_zostera_m_pnt.10 0 Italia POINT (1465385 5736311)
#>
#> $mediseh_posidonia_nodata
#> Simple feature collection with 465 features and 3 fields
#> Geometry type: MULTICURVE
#> Dimension: XY
#> Bounding box: xmin: -242654.3 ymin: 3537818 xmax: 3852508 ymax: 5696879
#> Projected CRS: WGS 84 / Pseudo-Mercator
#> First 10 features:
#> gml_id id km the_geom
#> 1 mediseh_posidonia_nodata.1 0 291.503233 MULTICURVE (LINESTRING (302...
#> 2 mediseh_posidonia_nodata.2 0 75.379502 MULTICURVE (LINESTRING (257...
#> 3 mediseh_posidonia_nodata.3 0 38.627764 MULTICURVE (LINESTRING (246...
#> 4 mediseh_posidonia_nodata.4 0 110.344802 MULTICURVE (LINESTRING (221...
#> 5 mediseh_posidonia_nodata.13 0 66.997461 MULTICURVE (LINESTRING (101...
#> 6 mediseh_posidonia_nodata.14 0 18.090640 MULTICURVE (LINESTRING (108...
#> 7 mediseh_posidonia_nodata.15 0 16.618978 MULTICURVE (LINESTRING (110...
#> 8 mediseh_posidonia_nodata.16 0 1.913773 MULTICURVE (LINESTRING (121...
#> 9 mediseh_posidonia_nodata.83 0 2.173447 MULTICURVE (LINESTRING (169...
#> 10 mediseh_posidonia_nodata.84 0 2.817453 MULTICURVE (LINESTRING (169...
You can also extract layers using a WFS service name.
emodnet_get_layers(
service = "biology",
layers = c("mediseh_zostera_m_pnt", "mediseh_posidonia_nodata")
)
#> ✔ WFS client created successfully
#> ℹ Service: "https://geo.vliz.be/geoserver/Emodnetbio/wfs"
#> ℹ Version: "2.0.0"
#> $mediseh_zostera_m_pnt
#> Simple feature collection with 54 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -4.167154 ymin: 33.07783 xmax: 15.35766 ymax: 45.72451
#> Geodetic CRS: WGS 84
#> First 10 features:
#> gml_id id country the_geom
#> 1 mediseh_zostera_m_pnt.1 0 Spagna POINT (-2.61314 36.71681)
#> 2 mediseh_zostera_m_pnt.2 0 Spagna POINT (-3.846598 36.75127)
#> 3 mediseh_zostera_m_pnt.3 0 Spagna POINT (-3.957785 36.72266)
#> 4 mediseh_zostera_m_pnt.4 0 Spagna POINT (-4.039712 36.74217)
#> 5 mediseh_zostera_m_pnt.5 0 Spagna POINT (-4.100182 36.72331)
#> 6 mediseh_zostera_m_pnt.6 0 Spagna POINT (-4.167154 36.71226)
#> 7 mediseh_zostera_m_pnt.7 0 Spagna POINT (-1.268366 37.55796)
#> 8 mediseh_zostera_m_pnt.8 0 Francia POINT (4.84864 43.37637)
#> 9 mediseh_zostera_m_pnt.9 0 Italia POINT (13.71831 45.70017)
#> 10 mediseh_zostera_m_pnt.10 0 Italia POINT (13.16378 45.72451)
#>
#> $mediseh_posidonia_nodata
#> Simple feature collection with 465 features and 3 fields
#> Geometry type: MULTICURVE
#> Dimension: XY
#> Bounding box: xmin: -2.1798 ymin: 30.26623 xmax: 34.60767 ymax: 45.47668
#> Geodetic CRS: WGS 84
#> First 10 features:
#> gml_id id km the_geom
#> 1 mediseh_posidonia_nodata.1 0 291.503233 MULTICURVE (LINESTRING (27....
#> 2 mediseh_posidonia_nodata.2 0 75.379502 MULTICURVE (LINESTRING (23....
#> 3 mediseh_posidonia_nodata.3 0 38.627764 MULTICURVE (LINESTRING (22....
#> 4 mediseh_posidonia_nodata.4 0 110.344802 MULTICURVE (LINESTRING (19....
#> 5 mediseh_posidonia_nodata.13 0 66.997461 MULTICURVE (LINESTRING (9.1...
#> 6 mediseh_posidonia_nodata.14 0 18.090640 MULTICURVE (LINESTRING (9.7...
#> 7 mediseh_posidonia_nodata.15 0 16.618978 MULTICURVE (LINESTRING (9.8...
#> 8 mediseh_posidonia_nodata.16 0 1.913773 MULTICURVE (LINESTRING (10....
#> 9 mediseh_posidonia_nodata.83 0 2.173447 MULTICURVE (LINESTRING (15....
#> 10 mediseh_posidonia_nodata.84 0 2.817453 MULTICURVE (LINESTRING (15....
Layers can also be returned to a single sf
object through argument
simplify
.
If TRUE
the function will try to reduce all layers into a single sf
.
If attempting to reduce fails, it will error:
emodnet_get_layers(
wfs = wfs_bio,
layers = layers,
simplify = TRUE
)
#> Error in `value[[3L]]()`:
#> ! Cannot reduce layers.
#> ℹ Try again with `simplify = FALSE`
Using simplify = TRUE
is also useful for returning an sf
object
rather than a list in single layer request.
emodnet_get_layers(
service = "biology",
layers = c("mediseh_posidonia_nodata"),
simplify = TRUE
)
#> ✔ WFS client created successfully
#> ℹ Service: "https://geo.vliz.be/geoserver/Emodnetbio/wfs"
#> ℹ Version: "2.0.0"
#> Simple feature collection with 465 features and 3 fields
#> Geometry type: MULTICURVE
#> Dimension: XY
#> Bounding box: xmin: -2.1798 ymin: 30.26623 xmax: 34.60767 ymax: 45.47668
#> Geodetic CRS: WGS 84
#> First 10 features:
#> gml_id id km the_geom
#> 1 mediseh_posidonia_nodata.1 0 291.503233 MULTICURVE (LINESTRING (27....
#> 2 mediseh_posidonia_nodata.2 0 75.379502 MULTICURVE (LINESTRING (23....
#> 3 mediseh_posidonia_nodata.3 0 38.627764 MULTICURVE (LINESTRING (22....
#> 4 mediseh_posidonia_nodata.4 0 110.344802 MULTICURVE (LINESTRING (19....
#> 5 mediseh_posidonia_nodata.13 0 66.997461 MULTICURVE (LINESTRING (9.1...
#> 6 mediseh_posidonia_nodata.14 0 18.090640 MULTICURVE (LINESTRING (9.7...
#> 7 mediseh_posidonia_nodata.15 0 16.618978 MULTICURVE (LINESTRING (9.8...
#> 8 mediseh_posidonia_nodata.16 0 1.913773 MULTICURVE (LINESTRING (10....
#> 9 mediseh_posidonia_nodata.83 0 2.173447 MULTICURVE (LINESTRING (15....
#> 10 mediseh_posidonia_nodata.84 0 2.817453 MULTICURVE (LINESTRING (15....
If you get an unexpected error,
- Look up the EMODnet monitor;
- Open an issue in this repository.
EMODnet hosts a wealth of marine and maritime data distributed through
three complementary web services: WFS, WCS, and ERDDAP. Web services
allow users to retrieve data programmatically from remote servers,
eliminating the need for manual downloads. This is particularly useful
for handling large datasets or conducting dynamic analyses. These
services are tailored to different data types and research needs, but
together, they ensure seamless access to all EMODnet vector, raster, and
gridded datasets. Vector data, such as shipwrecks or boundaries, are
accessible through emodnet.wfs
via Web Feature Services (WFS).
Complementary, raster and gridded datasets are available through Web
Coverage Services (WCS) and ERDDAP respectively.
EMODnet raster datasets, such as habitat maps or bathymetry, are
available through Web Coverage Services
(WCS). These data
are continuous, gridded, and often used for spatial visualization or
environmental modeling. The EMODnetWCS R package provides tools to
retrieve and process these raser datasets, in a similar fashion as
emodnet.wfs
. Extensive documentation is available at the EMODnetWCS
website.
Both WFS and WCS EMODnet services are based on a federated system: each
EMODnet thematic lot manages their servers and data, ensuring that their
data are exposed both via WFS and WCS. The twin R packages emodnet.wfs
and EMODnetWCS
simplify the access to all the entry points by
collecting them in single places, which are the packages themselves.
In contrast, the EMODnet ERDDAP Server is
centrally managed by the EMODnet Central Portal, offering a single
access point to all gridded and tabular datasets. ERDDAP simplifies
access to datasets such as digital terrain models, vessel density or
environmental data. It is particularly suited for large-scale,
multidimensional data analysis. In R, the rerddap
package allows users
to query and subset ERDDAP data programmatically, enabling efficient
analysis and integration into workflows. For example, researchers can
retrieve datasets on vessel density.
# install.packages("rerrdap")
library(rerddap)
#> Registered S3 method overwritten by 'hoardr':
#> method from
#> print.cache_info httr
# This is the url where the EMODnet ERDDAP server is located
erddap_url <- "https://erddap.emodnet.eu/erddap/"
# Inspect all available datasets
ed_datasets(url = erddap_url)
#> # A tibble: 8 × 16
#> griddap Subset tabledap Make.A.Graph wms files Title Summary FGDC ISO.19115
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 "" "/erd… /erddap… /erddap/tab… "" "" * Th… "This … "" ""
#> 2 "" "" /erddap… /erddap/tab… "" "/er… EMOD… "The d… "" ""
#> 3 "" "" /erddap… /erddap/tab… "" "/er… EMOD… "The d… "" ""
#> 4 "" "/erd… /erddap… /erddap/tab… "" "/er… EMOD… "The d… "/er… "/erddap…
#> 5 "" "" /erddap… /erddap/tab… "" "/er… Pres… "The p… "/er… "/erddap…
#> 6 "" "" /erddap… /erddap/tab… "" "" PSMS… "Perma… "" ""
#> 7 "" "" /erddap… /erddap/tab… "" "/er… PSMS… "Perma… "" ""
#> 8 "" "/erd… /erddap… /erddap/tab… "" "/er… TAO/… "This … "/er… "/erddap…
#> # ℹ 6 more variables: Info <chr>, Background.Info <chr>, RSS <chr>,
#> # Email <chr>, Institution <chr>, Dataset.ID <chr>
# Find datasets with the key words "vessel density"
ed_search(query = "vessel density", url = erddap_url)
#> # A tibble: 16 × 2
#> title dataset_id
#> <chr> <chr>
#> 1 Vessel Density humanactivities_9f…
#> 2 Vessel Density humanactivities_e9…
#> 3 Vessel traffic density, 2019, All EMODPACE_VD_All
#> 4 Vessel traffic density, 2019, Cargo EMODPACE_VD_09_Car…
#> 5 Vessel traffic density, 2019, Dredging or underwater ops EMODPACE_VD_03_Dre…
#> 6 Vessel traffic density, 2019, Fishing EMODPACE_VD_01_Fis…
#> 7 Vessel traffic density, 2019, High Speed craft EMODPACE_VD_06_High
#> 8 Vessel traffic density, 2019, Miliary and law enforcement EMODPACE_VD_11_Mil…
#> 9 Vessel traffic density, 2019, Other EMODPACE_VD_00_Oth…
#> 10 Vessel traffic density, 2019, Passenger EMODPACE_VD_08_Pas…
#> 11 Vessel traffic density, 2019, Pleasure craft EMODPACE_VD_05_Ple…
#> 12 Vessel traffic density, 2019, Sailing EMODPACE_VD_04_Sai…
#> 13 Vessel traffic density, 2019, Service EMODPACE_VD_02_Ser…
#> 14 Vessel traffic density, 2019, Tanker EMODPACE_VD_10_Tan…
#> 15 Vessel traffic density, 2019, Tug and Towing EMODPACE_VD_07_Tug
#> 16 Vessel traffic density, 2019, Unknown EMODPACE_VD_12_Unk…
# Inspect more info about the vessel density dataset, using its identifier
human_activities_data_info <- info(datasetid = "humanactivities_9f8a_3389_f08a", url = erddap_url)
human_activities_data_info
#> <ERDDAP info> humanactivities_9f8a_3389_f08a
#> Base URL: https://erddap.emodnet.eu/erddap
#> Dataset Type: griddap
#> Dimensions (range):
#> time: (2017-01-01T00:00:00Z, 2021-12-01T00:00:00Z)
#> y: (604500.0, 7034500.0)
#> x: (-622500.0, 6884500.0)
#> Variables:
#> vd:
#> Units: seconds
# Retrieve the vessel density at a particular time period
year_2020_gridded_data <- griddap(datasetx = human_activities_data_info, time = c("2020-03-18", "2020-03-19"))
#> info() output passed to x; setting base url to: https://erddap.emodnet.eu/erddap
head(year_2020_gridded_data$data)
#> x y time vd
#> 1 -622500 7034500 2020-04-01T00:00:00Z NA
#> 2 -621500 7034500 2020-04-01T00:00:00Z NA
#> 3 -620500 7034500 2020-04-01T00:00:00Z NA
#> 4 -619500 7034500 2020-04-01T00:00:00Z NA
#> 5 -618500 7034500 2020-04-01T00:00:00Z NA
#> 6 -617500 7034500 2020-04-01T00:00:00Z NA
More functionalities are available through rerddap
. Feel free to
explore the rerddap website to
find out what else can you do with the EMODnet datasets in ERDDAP.
To cite emodnet.wfs, please use the output from
citation(package = "emodnet.wfs")
.
citation(package = "emodnet.wfs")
#> To cite package 'emodnet.wfs' in publications use:
#>
#> Krystalli A, Fernández-Bejarano S, Salmon M (????). _emodnet.wfs:
#> Access EMODnet Web Feature Service data through R_. doi:10.14284/679
#> <https://doi.org/10.14284/679>, R package version 2.0.2.9000.
#> Integrated data products created under the European Marine
#> Observation Data Network (EMODnet) Biology project
#> (EASME/EMFF/2017/1.3.1.2/02/SI2.789013), funded by the by the
#> European Union under Regulation (EU) No 508/2014 of the European
#> Parliament and of the Council of 15 May 2014 on the European Maritime
#> and Fisheries Fund, <https://github.com/EMODnet/emodnet.wfs>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {{emodnet.wfs}: Access EMODnet Web Feature Service data through R},
#> author = {Anna Krystalli and Salvador Fernández-Bejarano and Maëlle Salmon},
#> note = {R package version 2.0.2.9000. Integrated data products created under the European Marine Observation Data Network (EMODnet) Biology project (EASME/EMFF/2017/1.3.1.2/02/SI2.789013), funded by the by the European Union under Regulation (EU) No 508/2014 of the European Parliament and of the Council of 15 May 2014 on the European Maritime and Fisheries Fund},
#> url = {https://github.com/EMODnet/emodnet.wfs},
#> doi = {10.14284/679},
#> }
This package was started by the Sheffield University during the EMODnet Biology WP4 data products workshop in June 2020.