Skip to content

DetectionTeamUCAS/Cascade_FPN_Tensorflow

Repository files navigation

Cascade R-CNN: Delving into High Quality Object Detection

Abstract

This repo is based on FPN, and completed by YangXue.

Train on COCO train2017 and test on COCO val2017 (coco minival).

Model Backbone Train Schedule GPU Image/GPU FP16 Box AP(Mask AP) test stage
Faster (paper) R50v1-FPN 1X 8X TITAN XP 1 no 38.3 3
Faster (ours) R50v1-FPN 1X 8X 2080 Ti 1 no 38.2 3
Faster (Face++) R50v1-FPN 1X 8X 2080 Ti 2 no 39.1 3

2

My Development Environment

1、python3.5 (anaconda recommend)
2、cuda9.0 (If you want to use cuda8, please set CUDA9 = False in the cfgs.py file.)
3、opencv(cv2)
4、tfplot
5、tensorflow == 1.12

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、Or you can choose to use a better backbone, refer to gluon2TF. Pretrain Model Link, password: 5ht9.

Trained weights

Select a configuration file in the folder ($PATH_ROOT/libs/configs/) and copy its contents into cfgs.py, then download the corresponding weights.

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py     
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py 

2、make tfrecord

cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord_coco.py --VOC_dir='/PATH/TO/JSON/FILE/' 
                                        --save_name='train' 
                                        --dataset='coco'

3、multi-gpu train

cd $PATH_ROOT/tools
python multi_gpu_train.py

Eval

cd $PATH_ROOT/tools
python eval_coco.py --eval_data='/PATH/TO/IMAGES/'  
                    --eval_gt='/PATH/TO/TEST/ANNOTATION/'
                    --GPU='0'

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/CharlesShang/FastMaskRCNN
5、https://github.com/matterport/Mask_RCNN
6、https://github.com/msracver/Deformable-ConvNets
7、https://github.com/tensorpack/tensorpack

About

Cascade R-CNN: Delving into High Quality Object Detection.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published