Skip to content

ssdetection is a general framework for our research on strongly supervised object detection.

License

Notifications You must be signed in to change notification settings

DetectionBLWX/ssdetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FasterRCNN

Pytorch Implementation of FasterRCNN.
You can star this repository to keep track of the project if it's helpful for you, thank you for your support.

Environment

OS: Ubuntu 16.04
Python: python3.x with torch==1.2.0, torchvision==0.4.0

Performance

Backbone Train Test Style Epochs Learning Rate RoIs AP
ResNet-18 trainval35k minival5k Pytorch 12 2e-2/2e-3/2e-4 512 27.1
ResNet-34 trainval35k minival5k Pytorch 12 2e-2/2e-3/2e-4 512 33.5
ResNet-50 trainval35k minival5k Pytorch 12 2e-2/2e-3/2e-4 512 34.9
ResNet-101 trainval35k minival5k Pytorch 12 2e-2/2e-3/2e-4 512 38.6

Trained models

You could get the trained models reported above at 
https://drive.google.com/open?id=1JYs4r1M6doRlMgKCxSWmue2iKAcMkJxe

Usage

Setup

cd libs
sh make.sh

Train

usage: train.py [-h] --datasetname DATASETNAME --backbonename BACKBONENAME
                [--checkpointspath CHECKPOINTSPATH]
optional arguments:
  -h, --help            show this help message and exit
  --datasetname DATASETNAME
                        dataset for training.
  --backbonename BACKBONENAME
                        backbone network for training.
  --checkpointspath CHECKPOINTSPATH
                        checkpoints you want to use.
cmd example:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --datasetname coco --backbonename resnet50

Test

usage: test.py [-h] --datasetname DATASETNAME [--annfilepath ANNFILEPATH]
               [--datasettype DATASETTYPE] --backbonename BACKBONENAME
               --checkpointspath CHECKPOINTSPATH [--nmsthresh NMSTHRESH]
optional arguments:
  -h, --help            show this help message and exit
  --datasetname DATASETNAME
                        dataset for testing.
  --annfilepath ANNFILEPATH
                        used to specify annfilepath.
  --datasettype DATASETTYPE
                        used to specify datasettype.
  --backbonename BACKBONENAME
                        backbone network for testing.
  --checkpointspath CHECKPOINTSPATH
                        checkpoints you want to use.
  --nmsthresh NMSTHRESH
                        thresh used in nms.
cmd example:
CUDA_VISIBLE_DEVICES=0 python test.py --checkpointspath faster_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50

Demo

usage: demo.py [-h] --imagepath IMAGEPATH --backbonename BACKBONENAME
               --datasetname DATASETNAME --checkpointspath CHECKPOINTSPATH
               [--nmsthresh NMSTHRESH] [--confthresh CONFTHRESH]
optional arguments:
  -h, --help            show this help message and exit
  --imagepath IMAGEPATH
                        image you want to detect.
  --backbonename BACKBONENAME
                        backbone network for demo.
  --datasetname DATASETNAME
                        dataset used to train.
  --checkpointspath CHECKPOINTSPATH
                        checkpoints you want to use.
  --nmsthresh NMSTHRESH
                        thresh used in nms.
  --confthresh CONFTHRESH
                        thresh used in showing bounding box.
cmd example:
CUDA_VISIBLE_DEVICES=0 python demo.py --checkpointspath faster_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50 --imagepath 000001.jpg

Reference

[1]. https://github.com/jwyang/faster-rcnn.pytorch
[2]. https://github.com/open-mmlab/mmdetection

About

ssdetection is a general framework for our research on strongly supervised object detection.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages