Skip to content

DeepIntoStreams/GCN-DevLSTM

Repository files navigation

GCN-DevLSTM: Path Development for Skeleton-Based Action Recognition

Alt text This repository is the official implementation of the paper entitled "GCN-DevLSTM: Path Development for Skeleton-Based Action Recognition".

Datasets

We provide configurations for three datasets:

-NTU RGB+D 60 skeleton -NTU RGB+D 120 skeleton -Chalearn 2013 skeleton

Requirements

  • numpy
  • torch
  • tqdm

Directory Structure

Put downloaded data into the following directory structure:

- data/
  - chalearn/
  - ntu/
  - ntu120/
  - nturgbd_raw/
    - nturgb+d_skeletons/     # from `nturgbd_skeletons_s001_to_s017.zip`
      ...
    - nturgb+d_skeletons120/  # from `nturgbd_skeletons_s018_to_s032.zip`
      ...
    - NTU_RGBD_samples_with_missing_skeletons.txt
    - NTU_RGBD120_samples_with_missing_skeletons.txt

Generating Data

  1. NTU RGB+D 60 or 120
    • cd data/ntu or data/ntu120
    • python get_raw_skes_data.py
    • python get_raw_denoised_data.py
    • python seq_transformation.py

Training & Testing

  • To train a new GCN-DevLSTM model run:
./train.sh
  • To train model on NTU RGB+D 60/120 with bone, motion or dual graph modalities, setting bone/vel/labeling_mode arguments in the config file ntu_sub/train_joint.yaml.
set 'bone: False and vel: False' # use joint modality
set 'bone: True and vel: False' # use bone modality
set 'bone: False and vel:True' # use joint motion modality
set 'bone: True and vel: True' # use bone motion modality
set 'bone: True and vel: False and labeling_mode: dual_graph'  # use dual graph modality
  • To test a trained model:
./test_NTU.sh
  • To ensemble the results of different modalities, run the following command:
./ensemble.sh
  • Examples
    • Train on NTU 120 XSub Joint on device 0
      • python main.py --config ./config/ntu_sub/train_joint.yaml --device 0
    • Train on Chalearn 2013
      • python main.py --config ./config/chalearn/train_joint.yaml --device 0
    • The model used is in model/gcn_devLSTM.py

Acknowledgements

We want to thank the authors of the following papers and repositories, their work formed the basis for this repository

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published