Repository for https://arxiv.org/abs/2311.12616
Successor Model: arxiv Repository
Setup the enviroment:
$ bash setup_venv.sh
$ source venv/bin/activate
Run the testing:
$ bash setup_venv.sh
$ python -m fgsim --hash fea87f9 train # top quarks
$ python -m fgsim --hash a6e035a train # light quarks
$ python -m fgsim --hash 3d60891 train # gluons
$ python -m fgsim --hash fea87f9 test
23-09-20 14:38 INFO tag: uc_t_dmp hash: fea87f9 loader_hash: 860c256
INFO Running command test
WARNING Loaded model from checkpoint at epoch 10014 grad_step 5758045.
WARNING Starting with state epoch: 10014
processed_events: 1151610000
grad_step: 5758045
complete: true
best_step: 4044000
best_epoch: 7033
time_train_step_start: 1678378023.0828917
time_io_end: 1678378022.9928455
time_train_step_end: 1678378023.0827272
INFO Loading test dataset from wd/uc_t_dmp/fea87f9/test_best/testdata.pt
INFO Evalutating best dataset
23-09-20 14:39 INFO Metric w1efp took 58.904263 sec
INFO Metric fpnd took 18.531814 sec
INFO {'w1m': (0.621227669864893, 0.09321568783334482), 'w1p': (1.154803651010956, 0.487636156336616), 'w1efp':
(1.5358753756792711, 0.3287367789723746), 'fpnd': (0.13744711100389395, nan)}
Retrain the models:
$ python -m fgsim --tag t_retrain setup
> Experiment setup with hash 8dea68a.
$ python -m fgsim --hash 8dea68a train
>
23-09-20 15:39 INFO tag: t_retrain hash: 8dea68a loader_hash: 0d09873
INFO Running command train
WARNING Proceeding without loading checkpoint.
WARNING Starting with state epoch: 0
processed_events: 0
grad_step: 0
complete: false
INFO Using the first 50 batches for validation and the next 250 batches for testing.
INFO Device: Tesla V100-SXM2-32GB
INFO Validating
Generating eval batches: 100%|████████████████████████████████████████████████████████| 50/50 [00:06<00:00, 8.04it/s]
INFO Postprocessing
INFO Postprocessing done
INFO w1m 118.82 w1p 42.76 fpnd 198.90 auc 0.03 w1disc 1.24
WARNING New best model at step 0
WARNING:fgsim:New best model at step 0
Epoch 0: 4%|████▏ | 589/14725 [00:51<20:30, 11.49it/s]
Epoch 1: 8%|████████▎ | 1178/14725 [00:46<17:50, 12.65it/s]
Epoch 2: 12%|████████████▍ | 1767/14725 [00:44<16:08, 13.37it/s]
Epoch 3: 14%|██████████████
Moritz Scham is funded by Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI (grant number: ZT-I-PF-5-3).