-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added essential metrics for every step
- Loading branch information
pedrojlazevedo
committed
Mar 5, 2020
1 parent
066c22e
commit 97956ca
Showing
4 changed files
with
253 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
import six | ||
|
||
def check_predicted_evidence_format(instance): | ||
if 'predicted_evidence' in instance.keys() and len(instance['predicted_evidence']): | ||
assert all(isinstance(prediction, list) | ||
for prediction in instance["predicted_evidence"]), \ | ||
"Predicted evidence must be a list of (page,line) lists" | ||
|
||
assert all(len(prediction) == 2 | ||
for prediction in instance["predicted_evidence"]), \ | ||
"Predicted evidence must be a list of (page,line) lists" | ||
|
||
assert all(isinstance(prediction[0], six.string_types) | ||
for prediction in instance["predicted_evidence"]), \ | ||
"Predicted evidence must be a list of (page<string>,line<int>) lists" | ||
|
||
assert all(isinstance(prediction[1], int) | ||
for prediction in instance["predicted_evidence"]), \ | ||
"Predicted evidence must be a list of (page<string>,line<int>) lists" | ||
|
||
|
||
def is_correct_label(instance): | ||
return instance["label"].upper() == instance["predicted_label"].upper() | ||
|
||
|
||
def is_strictly_correct(instance, max_evidence=None): | ||
#Strict evidence matching is only for NEI class | ||
check_predicted_evidence_format(instance) | ||
|
||
if instance["label"].upper() != "NOT ENOUGH INFO" and is_correct_label(instance): | ||
assert 'predicted_evidence' in instance, "Predicted evidence must be provided for strict scoring" | ||
|
||
if max_evidence is None: | ||
max_evidence = len(instance["predicted_evidence"]) | ||
|
||
|
||
for evience_group in instance["evidence"]: | ||
#Filter out the annotation ids. We just want the evidence page and line number | ||
actual_sentences = [[e[2], e[3]] for e in evience_group] | ||
#Only return true if an entire group of actual sentences is in the predicted sentences | ||
if all([actual_sent in instance["predicted_evidence"][:max_evidence] for actual_sent in actual_sentences]): | ||
return True | ||
|
||
#If the class is NEI, we don't score the evidence retrieval component | ||
elif instance["label"].upper() == "NOT ENOUGH INFO" and is_correct_label(instance): | ||
return True | ||
|
||
return False | ||
|
||
|
||
def evidence_macro_precision(instance, max_evidence=None): | ||
this_precision = 0.0 | ||
this_precision_hits = 0.0 | ||
|
||
if instance["label"].upper() != "NOT ENOUGH INFO": | ||
all_evi = [[e[2], e[3]] for eg in instance["evidence"] for e in eg if e[3] is not None] | ||
|
||
predicted_evidence = instance["predicted_evidence"] if max_evidence is None else \ | ||
instance["predicted_evidence"][:max_evidence] | ||
|
||
for prediction in predicted_evidence: | ||
if prediction in all_evi: | ||
this_precision += 1.0 | ||
this_precision_hits += 1.0 | ||
|
||
return (this_precision / this_precision_hits) if this_precision_hits > 0 else 1.0, 1.0 | ||
|
||
return 0.0, 0.0 | ||
|
||
def evidence_macro_recall(instance, max_evidence=None): | ||
# We only want to score F1/Precision/Recall of recalled evidence for NEI claims | ||
if instance["label"].upper() != "NOT ENOUGH INFO": | ||
# If there's no evidence to predict, return 1 | ||
if len(instance["evidence"]) == 0 or all([len(eg) == 0 for eg in instance]): | ||
return 1.0, 1.0 | ||
|
||
predicted_evidence = instance["predicted_evidence"] if max_evidence is None else \ | ||
instance["predicted_evidence"][:max_evidence] | ||
|
||
for evidence_group in instance["evidence"]: | ||
evidence = [[e[2], e[3]] for e in evidence_group] | ||
if all([item in predicted_evidence for item in evidence]): | ||
# We only want to score complete groups of evidence. Incomplete groups are worthless. | ||
return 1.0, 1.0 | ||
return 0.0, 1.0 | ||
return 0.0, 0.0 | ||
|
||
|
||
# Micro is not used. This code is just included to demostrate our model of macro/micro | ||
def evidence_micro_precision(instance): | ||
this_precision = 0 | ||
this_precision_hits = 0 | ||
|
||
# We only want to score Macro F1/Precision/Recall of recalled evidence for NEI claims | ||
if instance["label"].upper() != "NOT ENOUGH INFO": | ||
all_evi = [[e[2], e[3]] for eg in instance["evidence"] for e in eg if e[3] is not None] | ||
|
||
for prediction in instance["predicted_evidence"]: | ||
if prediction in all_evi: | ||
this_precision += 1.0 | ||
this_precision_hits += 1.0 | ||
|
||
return this_precision, this_precision_hits | ||
|
||
|
||
def fever_score(predictions,actual=None, max_evidence=5): | ||
correct = 0 | ||
strict = 0 | ||
|
||
macro_precision = 0 | ||
macro_precision_hits = 0 | ||
|
||
macro_recall = 0 | ||
macro_recall_hits = 0 | ||
|
||
for idx,instance in enumerate(predictions): | ||
assert 'predicted_evidence' in instance.keys(), 'evidence must be provided for the prediction' | ||
|
||
#If it's a blind test set, we need to copy in the values from the actual data | ||
if 'evidence' not in instance or 'label' not in instance: | ||
assert actual is not None, 'in blind evaluation mode, actual data must be provided' | ||
assert len(actual) == len(predictions), 'actual data and predicted data length must match' | ||
assert 'evidence' in actual[idx].keys(), 'evidence must be provided for the actual evidence' | ||
instance['evidence'] = actual[idx]['evidence'] | ||
instance['label'] = actual[idx]['label'] | ||
|
||
assert 'evidence' in instance.keys(), 'gold evidence must be provided' | ||
|
||
if is_correct_label(instance): | ||
correct += 1.0 | ||
|
||
if is_strictly_correct(instance, max_evidence): | ||
strict+=1.0 | ||
|
||
macro_prec = evidence_macro_precision(instance, max_evidence) | ||
macro_precision += macro_prec[0] | ||
macro_precision_hits += macro_prec[1] | ||
|
||
macro_rec = evidence_macro_recall(instance, max_evidence) | ||
macro_recall += macro_rec[0] | ||
macro_recall_hits += macro_rec[1] | ||
|
||
total = len(predictions) | ||
|
||
strict_score = strict / total | ||
acc_score = correct / total | ||
|
||
pr = (macro_precision / macro_precision_hits) if macro_precision_hits > 0 else 1.0 | ||
rec = (macro_recall / macro_recall_hits) if macro_recall_hits > 0 else 0.0 | ||
|
||
f1 = 2.0 * pr * rec / (pr + rec) | ||
|
||
return strict_score, acc_score, pr, rec, f1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters