Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CONTINT-3310, CONTINT-3314] Check agent restarts at the end of e2e tests #21096

Merged

Conversation

L3n41c
Copy link
Member

@L3n41c L3n41c commented Nov 24, 2023

What does this PR do?

Check if any agent has restarted at the end of the tests.

Motivation

An agent can potentially restart during the tests for various reasons like a health probe failure or an OOM kill.
When it happens, it can generate random symptoms on random tests.
A metric can be fully missing if the agent is restarting when the metric is checked.
Only a subset of tags can be missing if the agent has just restarted, but not all the collectors have finished to feed workload meta and the tagger.
So, in case of failure(s), knowing if an agent has restarted at some point during the execution of the tests can save a lot of time for the investigation.

Additional Notes

Possible Drawbacks / Trade-offs

Describe how to test/QA your changes

Reviewer's Checklist

  • If known, an appropriate milestone has been selected; otherwise the Triage milestone is set.
  • Use the major_change label if your change either has a major impact on the code base, is impacting multiple teams or is changing important well-established internals of the Agent. This label will be use during QA to make sure each team pay extra attention to the changed behavior. For any customer facing change use a releasenote.
  • A release note has been added or the changelog/no-changelog label has been applied.
  • Changed code has automated tests for its functionality.
  • Adequate QA/testing plan information is provided if the qa/skip-qa label is not applied.
  • At least one team/.. label has been applied, indicating the team(s) that should QA this change.
  • If applicable, docs team has been notified or an issue has been opened on the documentation repo.
  • If applicable, the need-change/operator and need-change/helm labels have been applied.
  • If applicable, the k8s/<min-version> label, indicating the lowest Kubernetes version compatible with this feature.
  • If applicable, the config template has been updated.

@L3n41c L3n41c added team/containers dev/testing changelog/no-changelog [deprecated] qa/skip-qa - use other qa/ labels [DEPRECATED] Please use qa/done or qa/no-code-change to skip creating a QA card labels Nov 24, 2023
@L3n41c L3n41c added this to the 7.51.0 milestone Nov 24, 2023
@L3n41c L3n41c requested a review from a team as a code owner November 24, 2023 16:20
@pr-commenter
Copy link

pr-commenter bot commented Nov 24, 2023

Bloop Bleep... Dogbot Here

Regression Detector Results

Run ID: 8a2c7b46-ee77-4b95-a86e-725112cedea7
Baseline: 4640002
Comparison: 419da0b
Total datadog-agent CPUs: 7

Explanation

A regression test is an integrated performance test for datadog-agent in a repeatable rig, with varying configuration for datadog-agent. What follows is a statistical summary of a brief datadog-agent run for each configuration across SHAs given above. The goal of these tests are to determine quickly if datadog-agent performance is changed and to what degree by a pull request.

Because a target's optimization goal performance in each experiment will vary somewhat each time it is run, we can only estimate mean differences in optimization goal relative to the baseline target. We express these differences as a percentage change relative to the baseline target, denoted "Δ mean %". These estimates are made to a precision that balances accuracy and cost control. We represent this precision as a 90.00% confidence interval denoted "Δ mean % CI": there is a 90.00% chance that the true value of "Δ mean %" is in that interval.

We decide whether a change in performance is a "regression" -- a change worth investigating further -- if both of the following two criteria are true:

  1. The estimated |Δ mean %| ≥ 5.00%. This criterion intends to answer the question "Does the estimated change in mean optimization goal performance have a meaningful impact on your customers?". We assume that when |Δ mean %| < 5.00%, the impact on your customers is not meaningful. We also assume that a performance change in optimization goal is worth investigating whether it is an increase or decrease, so long as the magnitude of the change is sufficiently large.

  2. Zero is not in the 90.00% confidence interval "Δ mean % CI" about "Δ mean %". This statement is equivalent to saying that there is at least a 90.00% chance that the mean difference in optimization goal is not zero. This criterion intends to answer the question, "Is there a statistically significant difference in mean optimization goal performance?". It also means there is no more than a 10.00% chance this criterion reports a statistically significant difference when the true difference in mean optimization goal is zero -- a "false positive". We assume you are willing to accept a 10.00% chance of inaccurately detecting a change in performance when no true difference exists.

The table below, if present, lists those experiments that have experienced a statistically significant change in mean optimization goal performance between baseline and comparison SHAs with 90.00% confidence OR have been detected as newly erratic. Negative values of "Δ mean %" mean that baseline is faster, whereas positive values of "Δ mean %" mean that comparison is faster. Results that do not exhibit more than a ±5.00% change in their mean optimization goal are discarded. An experiment is erratic if its coefficient of variation is greater than 0.1. The abbreviated table will be omitted if no interesting change is observed.

No interesting changes in experiment optimization goals with confidence ≥ 90.00% and |Δ mean %| ≥ 5.00%.

Fine details of change detection per experiment.
experiment goal Δ mean % Δ mean % CI confidence
tcp_syslog_to_blackhole ingress throughput +0.43 [+0.30, +0.56] 100.00%
uds_dogstatsd_to_api ingress throughput +0.04 [-0.12, +0.19] 29.81%
dogstatsd_string_interner_8MiB_50k ingress throughput +0.03 [-0.01, +0.08] 79.44%
trace_agent_msgpack ingress throughput +0.02 [-0.11, +0.15] 17.38%
dogstatsd_string_interner_64MiB_1k ingress throughput +0.00 [-0.13, +0.13] 1.04%
dogstatsd_string_interner_8MiB_100 ingress throughput +0.00 [-0.13, +0.13] 0.72%
dogstatsd_string_interner_128MiB_100 ingress throughput +0.00 [-0.14, +0.14] 0.25%
tcp_dd_logs_filter_exclude ingress throughput +0.00 [-0.17, +0.17] 0.04%
dogstatsd_string_interner_8MiB_10k ingress throughput -0.00 [-0.00, +0.00] 7.09%
dogstatsd_string_interner_64MiB_100 ingress throughput -0.00 [-0.14, +0.14] 0.18%
trace_agent_json ingress throughput -0.00 [-0.12, +0.12] 0.51%
dogstatsd_string_interner_8MiB_1k ingress throughput -0.00 [-0.10, +0.10] 1.07%
dogstatsd_string_interner_128MiB_1k ingress throughput -0.00 [-0.14, +0.14] 2.51%
idle egress throughput -0.01 [-2.46, +2.45] 0.27%
dogstatsd_string_interner_8MiB_100k ingress throughput -0.02 [-0.07, +0.02] 68.26%
file_tree egress throughput -0.36 [-2.19, +1.47] 25.67%
file_to_blackhole egress throughput -0.40 [-1.41, +0.61] 48.78%
otel_to_otel_logs ingress throughput -0.47 [-2.05, +1.11] 37.62%

@L3n41c L3n41c merged commit cdc12a3 into main Nov 24, 2023
17 checks passed
@L3n41c L3n41c deleted the lenaic/CONTINT-258_CONTINT-3310_CONTINT-3314_check_agent_restart branch November 24, 2023 21:03
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
changelog/no-changelog [deprecated] qa/skip-qa - use other qa/ labels [DEPRECATED] Please use qa/done or qa/no-code-change to skip creating a QA card dev/testing team/containers
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants