forked from open-mmlab/mmcv
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Refactor] Repalce the implementation of rotated_feature_align with m…
…lu_ops (open-mmlab#2659)
- Loading branch information
1 parent
6fdf853
commit 162142d
Showing
4 changed files
with
122 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
115 changes: 115 additions & 0 deletions
115
mmcv/ops/csrc/pytorch/mlu/rotated_feature_align_mlu.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
/************************************************************************* | ||
* Copyright (C) 2022 by Cambricon. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | ||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | ||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
*************************************************************************/ | ||
#include "mlu_common_helper.h" | ||
|
||
void RotatedFeatureAlignForwardMLUKernelLauncher(const Tensor features, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, | ||
Tensor output) { | ||
auto memory_format = | ||
torch_mlu::cnnl::ops::get_channels_last_memory_format(features.dim()); | ||
auto features_ = | ||
torch_mlu::cnnl::ops::cnnl_contiguous(features, memory_format); | ||
auto best_bboxes_contiguous = torch_mlu::cnnl::ops::cnnl_contiguous( | ||
best_bboxes, best_bboxes.suggest_memory_format()); | ||
auto output_contiguous = | ||
torch_mlu::cnnl::ops::cnnl_contiguous(output, memory_format); | ||
|
||
MluOpTensorDescriptor features_desc, best_bboxes_desc, output_desc; | ||
features_desc.set_with_layout(features_, MLUOP_LAYOUT_NHWC); | ||
best_bboxes_desc.set(best_bboxes_contiguous); | ||
output_desc.set_with_layout(output_contiguous, MLUOP_LAYOUT_NHWC); | ||
|
||
// get ptr of tensors | ||
auto features_impl = torch_mlu::getMluTensorImpl(features_); | ||
auto features_ptr = features_impl->cnnlMalloc(); | ||
auto best_bboxes_impl = torch_mlu::getMluTensorImpl(best_bboxes_contiguous); | ||
auto best_bboxes_ptr = best_bboxes_impl->cnnlMalloc(); | ||
auto output_impl = torch_mlu::getMluTensorImpl(output_contiguous); | ||
auto output_ptr = output_impl->cnnlMalloc(); | ||
|
||
// get compute handle | ||
auto handle = mluOpGetCurrentHandle(); | ||
mluOpRotatedFeatureAlignForward( | ||
handle, features_desc.desc(), features_ptr, best_bboxes_desc.desc(), | ||
best_bboxes_ptr, spatial_scale, points, output_desc.desc(), output_ptr); | ||
|
||
output.copy_(output_contiguous); | ||
} | ||
|
||
void RotatedFeatureAlignBackwardMLUKernelLauncher(const Tensor top_grad, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, | ||
Tensor bottom_grad) { | ||
auto memory_format = | ||
torch_mlu::cnnl::ops::get_channels_last_memory_format(top_grad.dim()); | ||
auto top_grad_ = | ||
torch_mlu::cnnl::ops::cnnl_contiguous(top_grad, memory_format); | ||
auto best_bboxes_contiguous = torch_mlu::cnnl::ops::cnnl_contiguous( | ||
best_bboxes, best_bboxes.suggest_memory_format()); | ||
auto bottom_grad_ = | ||
torch_mlu::cnnl::ops::cnnl_contiguous(bottom_grad, memory_format); | ||
|
||
// get ptr of tensors | ||
auto top_grad_impl = torch_mlu::getMluTensorImpl(top_grad_); | ||
auto top_grad_ptr = top_grad_impl->cnnlMalloc(); | ||
auto best_bboxes_impl = torch_mlu::getMluTensorImpl(best_bboxes_contiguous); | ||
auto best_bboxes_ptr = best_bboxes_impl->cnnlMalloc(); | ||
auto bottom_grad_impl = torch_mlu::getMluTensorImpl(bottom_grad_); | ||
auto bottom_grad_ptr = bottom_grad_impl->cnnlMalloc(); | ||
|
||
MluOpTensorDescriptor top_grad_desc, best_bboxes_desc, bottom_grad_desc; | ||
top_grad_desc.set_with_layout(top_grad_, MLUOP_LAYOUT_NHWC); | ||
best_bboxes_desc.set(best_bboxes_contiguous); | ||
bottom_grad_desc.set_with_layout(bottom_grad_, MLUOP_LAYOUT_NHWC); | ||
|
||
// get compute handle | ||
auto handle = mluOpGetCurrentHandle(); | ||
mluOpRotatedFeatureAlignBackward(handle, top_grad_desc.desc(), top_grad_ptr, | ||
best_bboxes_desc.desc(), best_bboxes_ptr, | ||
spatial_scale, points, | ||
bottom_grad_desc.desc(), bottom_grad_ptr); | ||
bottom_grad.copy_(bottom_grad_); | ||
} | ||
|
||
void rotated_feature_align_forward_mlu(const Tensor features, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, Tensor output) { | ||
RotatedFeatureAlignForwardMLUKernelLauncher(features, best_bboxes, | ||
spatial_scale, points, output); | ||
} | ||
|
||
void rotated_feature_align_backward_mlu(const Tensor top_grad, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, Tensor bottom_grad) { | ||
RotatedFeatureAlignBackwardMLUKernelLauncher( | ||
top_grad, best_bboxes, spatial_scale, points, bottom_grad); | ||
} | ||
|
||
void rotated_feature_align_forward_impl(const Tensor features, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, Tensor output); | ||
|
||
void rotated_feature_align_backward_impl(const Tensor top_grad, | ||
const Tensor best_bboxes, | ||
const float spatial_scale, | ||
const int points, Tensor bottom_grad); | ||
|
||
REGISTER_DEVICE_IMPL(rotated_feature_align_forward_impl, MLU, | ||
rotated_feature_align_forward_mlu); | ||
REGISTER_DEVICE_IMPL(rotated_feature_align_backward_impl, MLU, | ||
rotated_feature_align_backward_mlu); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters