forked from ycjuan/libffm
-
Notifications
You must be signed in to change notification settings - Fork 7
A Library for Field-aware Factorization Machines
License
CyberAgentAI/libffm
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
LIBFFM is a library for field-aware factorization machine. For the formulation it solves, please check: http://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf Table of Contents ================= - Overfitting and Early Stopping - Specifying the importance weights - Installation - Data Format - Command Line Usage - Examples - Library Usage - OpenMP - Building macOS Binaries - Building Windows Binaries Overfitting and Early Stopping ============================== FFM is prone to overfitting, and the solution we have so far is early stopping. See how FFM behaves on a certain data set: > ffm-train -p va.ffm -l 0.00002 tr.ffm iter tr_logloss va_logloss 1 0.49738 0.48776 2 0.47383 0.47995 3 0.46366 0.47480 4 0.45561 0.47231 5 0.44810 0.47034 6 0.44037 0.47003 7 0.43239 0.46952 8 0.42362 0.46999 9 0.41394 0.47088 10 0.40326 0.47228 11 0.39156 0.47435 12 0.37886 0.47683 13 0.36522 0.47975 14 0.35079 0.48321 15 0.33578 0.48703 We see the best validation loss is achieved at 7th iteration. If we keep training, then overfitting begins. It is worth noting that increasing regularization parameter do not help: > ffm-train -p va.ffm -l 0.0002 -t 50 -s 12 tr.ffm iter tr_logloss va_logloss 1 0.50532 0.49905 2 0.48782 0.49242 3 0.48136 0.48748 ... 29 0.42183 0.47014 ... 48 0.37071 0.47333 49 0.36767 0.47374 50 0.36472 0.47404 To avoid overfitting, we recommend always provide a validation set with option `-p.' You can use option `--auto-stop' to stop at the iteration that reaches the best validation loss: > ffm-train -p va.ffm -l 0.00002 --auto-stop tr.ffm iter tr_logloss va_logloss 1 0.49738 0.48776 2 0.47383 0.47995 3 0.46366 0.47480 4 0.45561 0.47231 5 0.44810 0.47034 6 0.44037 0.47003 7 0.43239 0.46952 8 0.42362 0.46999 Auto-stop. Use model at 7th iteration. Specifying the importance weights ================================= Usage: Use '-W weight_file' to assign importance weights for each training data. Use '-WV weight_file' to assign importance weights for each validation data. Please make sure all importance weights are non-negative. Example: $ ./ffm-train -p va.ffm -W weights.txt -l 0.00002 tr.ffm $ ./ffm-train -p va.ffm -W weights.txt -WV va_weights.txt -l 0.00002 tr.ffm Installation ============ Requirement: LIBFFM is written in C++. It requires C++11 and OpenMP supports. If OpenMP is not available on your platform, please refer to section `OpenMP.' - Unix-like systems: To compile on Unix-like systems, type `make' in the command line. - OS X: The built-in compiler should be able to compile LIBFFM. However, OpenMP may not be supported. In this case you have to compile without OpenMP. See section `OpenMP' for detail. - Windows: See `Building Windows Binaries' to compile. Data Format =========== The data format of LIBFFM is: <label> <field1>:<index1>:<value1> <field2>:<index2>:<value2> ... . . . `field' and `index' should be non-negative integers. See an example `bigdata.tr.txt.' Command Line Usage ================== - `ffm-train' usage: ffm-train [options] training_set_file [model_file] options: -l <lambda>: set regularization parameter (default 0.00002) -k <factor>: set number of latent factors (default 4) -t <iteration>: set number of iterations (default 15) -r <eta>: set learning rate (default 0.2) -s <nr_threads>: set number of threads (default 1) -p <path>: set path to the validation set -f <path>: set path for production model file -m <prefix>: set key prefix for production model -W <path>: set path of importance weights file for training set -WV <path>: set path of importance weights file for validation set --quiet: quiet model (no output) --no-norm: disable instance-wise normalization --no-rand: disable random update <training_set_file>.bin will be generated) --json-meta: generate a meta file if sets json file path. --auto-stop: stop at the iteration that achieves the best validation loss (must be used with -p) --auto-stop-threshold: set the threshold count for stop at the iteration that achieves the best validation loss (must be used with --auto-stop) --nds-rate: set the negative down sampling rate for training dataset. By default we do instance-wise normalization. That is, we normalize the 2-norm of each instance to 1. You can use `--no-norm' to disable this function. By default, our algorithm randomly select an instance for update in each inner iteration. On some datasets you may want to do update in the original order. You can do it by using `--no-rand' together with `-s 1.' Because FFM usually need early stopping for better test performance, we provide an option `--auto-stop' to stop at the iteration that achieves the best validation loss. Note that you need to provide a validation set with `-p' when you use this option. - `ffm-predict' usage: ffm-predict test_file model_file output_file [options] options: --nds-rate: set the negative down sampling rate for training dataset. Examples ======== > ffm-train bigdata.tr.txt model train a model using the default parameters > ffm-train -l 0.001 -k 16 -t 30 -r 0.05 -s 4 bigdata.tr.txt model train a model using the following parameters: regularization cost = 0.001 latent factors = 16 iterations = 30 learning rate = 0.05 threads = 4 > ffm-train -p bigdata.te.txt bigdata.tr.txt model use bigdata.te.txt as validation set > ffm-train --quiet bigdata.tr.txt do not print message to screen > ffm-predict bigdata.te.txt model output do prediction > ffm-train -p bigdata.te.txt -t 100 --auto-stop bigdata.tr.txt use auto-stop to stop at the best iteration according to validation loss Library Usage ============= These structures and functions are declared in the header file `ffm.h.' You need to #include `ffm.h' in your C/C++ source files and link your program with `ffm.cpp.' You can see `ffm-train.cpp' and `ffm-predict.cpp' for examples showing how to use them. There are four public data structures in LIBFFM. - struct ffm_node { ffm_int f; // field index ffm_int j; // column index ffm_float v; // value }; Each `ffm_node' represents a non-zero element in a sparse matrix. - struct ffm_problem { ffm_int n; // number of features ffm_int l; // number of instances ffm_int m; // number of fields ffm_node *X; // non-zero elements ffm_long *P; // row pointers ffm_float *Y; // labels }; - struct ffm_parameter { ffm_float eta; ffm_float lambda; ffm_int nr_iters; ffm_int k; ffm_int nr_threads; ffm_float nds_rate bool quiet; bool normalization; bool random; bool auto_stop; }; `ffm_parameter' represents the parameters used for training. The meaning of each variable is: variable meaning default ============================================================ eta learning rate 0.1 lambda regularization cost 0 nr_iters number of iterations 15 k number of latent factors 4 nr_threads number of threads used 1 quiet no outputs to stdout false normalization instance-wise normalization false random randomly select instance in SG true auto_stop auto stop at the best iteration false nds_rate negative down sampling rate 1.0 To obtain a parameter object with default values, use the function `ffm_get_default_param.' - struct ffm_model { ffm_int n; // number of features ffm_int m; // number of fields ffm_int k; // number of latent factors ffm_float *W; // store model values bool normalization; // do instance-wise normalization }; Functions available in LIBFFM include: - ffm_parameter ffm_get_default_param(); Get default parameters. - ffm_int ffm_save_model(struct ffm_model const *model, char const *path); Save a model. It returns 0 on sucess and 1 on failure. - struct ffm_model* ffm_load_model(char const *path); Load a model. If the model could not be loaded, a nullptr is returned. - void ffm_destroy_model(struct ffm_model **model); Destroy a model. - struct ffm_model* ffm_train(struct ffm_problem const *prob, ffm_parameter param); Train a model. - struct ffm_model* ffm_train_with_validation(struct ffm_problem const *Tr, struct ffm_problem const *Va, ffm_parameter param); Train a model with training set `Tr' and validation set `Va.' The logloss of the validation set is printed at each iteration. - ffm_float ffm_predict(ffm_node *begin, ffm_node *end, ffm_model *model); Do prediction. `begin' and `end' are pointers to specify the beginning and ending position of the instance to be predicted. OpenMP ====== We use OpenMP to do parallelization. If OpenMP is not available on your platform, then please comment out the following lines in Makefile. DFLAG += -DUSEOMP CXXFLAGS += -fopenmp Note: Please always run `make clean all' if these flags are changed. Building macOS Binaries ======================= Apple clang (use libomp) brew install libomp make OMP_CXXFLAGS="-Xpreprocessor -fopenmp -I$(brew --prefix libomp)/include" OMP_LDFLAGS="-L$(brew --prefix libomp)/lib -lomp" Using gcc (installed by homebrew) brew install gcc make CXX="g++-8" Note: replace "8" with version of gcc installed on your machine Building Windows Binaries ========================= To build them via command-line tools of Visual C++, use the following steps: 1. Open a DOS command box (or Developer Command Prompt for Visual Studio) and go to LIBFFM directory. If environment variables of VC++ have not been set, type "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat" You may have to modify the above command according which version of VC++ or where it is installed. 2. Type nmake -f Makefile.win clean all Contributors ============ Yu-Chin Juan, Wei-Sheng Chin, and Yong Zhuang For questions, comments, feature requests, or bug report, please send your email to Yu-Chin ([email protected])
About
A Library for Field-aware Factorization Machines
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published
Languages
- C++ 58.0%
- Python 26.1%
- Cython 12.5%
- CMake 1.5%
- Shell 1.1%
- Makefile 0.8%