This is the code repo accompanying our paper "Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights."
We implement the following graph foundation model building blocks.
- Graph prompt models (OneForAll, Prodigy)
- GraphLLM (LLaGA)
- Graph Self-supervised learning (GraphMAE, BGRL, DGI, and so on)
- Link prediction-specific models, including BUDDY and SEAL
We support the following two scenarios.
- Co-training: Pre-training on a set of datasets and testing on the same ones
- Pre-training: Pre-training on a set of datasets and testing on unseen ones
pip install -r requirements.txt
We follow OneForAll's way of managing the datasets. We support the following datasets.
Name | #Graphs | #Nodes | #Edges | Domains | Tasks | #classes |
---|---|---|---|---|---|---|
Cora | 1 | 2708 | 10556 | CS Citation | Node, Link | 7 |
CiteSeer | 1 | 3186 | 8450 | CS Citation | Node, Link | 6 |
Arxiv | 1 | 169343 | 2315598 | CS Citation | Node, Link | 40 |
Arxiv23 | 1 | 46198 | 77726 | CS Citation | Node, Link | 40 |
History | 1 | 41551 | 503180 | E-commerce | Node, Link | 12 |
Child | 1 | 76875 | 2325044 | E-commerce | Node, Link | 24 |
Computers | 1 | 87229 | 1256548 | E-commerce | Node, Link | 10 |
Photo | 1 | 48362 | 873782 | E-commerce | Node, Link | 12 |
Sportsfit | 1 | 173055 | 3020134 | E-commerce | Node, Link | 13 |
Products | 1 | 316513 | 19337722 | E-commerce | Node, Link | 39 |
Amazon Ratings | 1 | 24492 | 186100 | E-commerce | Node, Link | 5 |
Pubmed | 1 | 19717 | 88648 | Bio Citation | Node, Link | 3 |
WikiCS | 1 | 11701 | 431726 | Knowledge | Node, Link | 10 |
Tolokers | 1 | 11758 | 1038000 | Anomaly | Node, Link | 2 |
DBLP | 1 | 14376 | 431326 | CS Citation | Node, Link | 4 |
CheMBL | 365065 | 26 | 112 | Biology | Graph | 1048 |
PCBA | 437092 | 26 | 56 | Biology | Graph | 128 |
HIV | 41127 | 26 | 55 | Biology | Graph | 2 |
Tox21 | 7831 | 19 | 39 | Biology | Graph | 12 |
Bace | 1513 | 34 | 74 | Biology | Graph | 2 |
Bbbp | 2039 | 24 | 52 | Biology | Graph | 2 |
Muv | 93087 | 24 | 53 | Biology | Graph | 17 |
Toxcast | 8575 | 19 | 39 | Biology | Graph | 588 |
The processed file versions can be achieved from the following link.
Structures of the processed files:
cache_data_{llm encoder name}
(for example, minilm)dataset_name
processed
data.pt
geometric_data_processed.pt
pre_filter.pt
pre_transform.pt
texts.pkl
geometric_data_processed.pt
is the core storage object, and node_text_feat
stores the processed node features.
data.pt
contains the index file used to query the attributes stored in geometric_data_processed.pt
.
A comprehensive introduction of each column can be found in OneForAll's repo.
To prepare the data, it's okay to generate all raw files yourself (run oneforall for 1 epoch, including all datasets). I recommend you use the preprocessed files directly and unzip them to the main directory.
configs
: Directory for setting the task/dataset for OneForAll. Add new datasets heredata
: data utility files/generation files using the OneForAll data interfacegp
: graph utility files from the original OneForAll repographllm
: utility files for LLaGAgraphmae
: utility files for graphmaelink
: utility files for BUDDYmodels
: model implementationsprodigy
: prodigy filessubgcon
: utility files/data files for self-supervised learning
eval_pretrain_*, eval_res
: main files for LLaGAfulllink.py
: main files for GCN link predictionlinkpred.py
: main files for BUDDY/SEALrun_cdm
: main files for OFAsslmain
: main files for SSLsimplerlr
: main files for simpleSBERT
- Co-training setting: just set up a config file similar to
demo/e2e_all_config.yaml
- Pre-training setting: when loading the pre-trained model, use
gnn_load_path
.
- Use
llm_train.sh
to generate checkpoints - Use
llm_eval.sh
orllm_eval_link.sh
to generate the answer files for node/link-level tasks. For example,bash llm_eval.sh citeseer nc ./checkpoints/llaga-mistral-7b-hf-sbert-4-hop-token-linear-cora.3-citeseer.4-pubmed.3-nc-lp-projector/ citationcross
- Use
llmres.sh
to calculate the results
python3 fulllink.py --pre_train_datasets "cora-link" "citeseer-link" "pubmed-link" "arxiv-link" "arxiv23-link" "bookhis-link" "bookchild-link" "sportsfit-link" "products-link" "elecomp-link" "elephoto-link" --encoder gcn --num_layers 3 --num_hidden 128 --batch_size 512
python3 linkpred.py --pre_train_datasets cora citeseer arxiv arxiv23 bookhis bookchild elecomp elephoto sportsfit products pubmed wikics --model BUDDY --cache_subgraph_features --max_hash_hops 3 --epochs 50
python3 linkpred.py --pre_train_datasets cora --model SEALGCN --hidden_channels 256 --num_hops 3
Check the best hyper-parameter in the paper (use cpuinf can do full-batch inference on CPU, which is faster on our environment)
python3 sslmain.py --pre_train_datasets arxiv sportsfit products --method graphmae --num_heads 4 --num_out_heads 1 --num_layers 3 --num_hidden 1024 --residual --in_drop 0.5 --attn_drop 0.5 --norm 'batchnorm' --lr 0.01 --weight_decay 1e-5 --activation 'prelu' --mask_rate 0.75 --drop_edge_rate 0 --replace_rate 0.2 --scheduler --lrtype 'cosine' --save_model --max_epoch 5 --subgraph_size 1024 --warmup --cpuinf
pretrain on arxiv
python experiments/run_single_experiment.py --dataset arxiv --root <root> --original_features False -ds_cap 24000 -val_cap 100 -test_cap 100 --emb_dim 256 --epochs 1 -ckpt_step 1000 -layers S2,U,M -lr 3e-4 -way 30 -shot 3 -qry 4 -eval_step 5000 -task cls_nm_sb -bs 1 -aug ND0.5,NZ0.5 -aug_test True -attr 1000 --device 0 --prefix MAG_PT_PRODIGY
test on History
python3 experiments/run_single_experiment.py --dataset bookhis --original_features True -ds_cap 300 -val_cap 300 -test_cap 300 --emb_dim 256 --epochs 1 -ckpt_step 1000 -layers S2,U,M -lr 3e-4 -way 12 -shot 3 -qry 4 -eval_step 50 -task classification -bs 1 -aug ND0.5,NZ0.5 -aug_test True -attr 1000 --device 0 --prefix test --root <root> -pretrained <ckpt> --eval_only True
This code repo is heavily based on OneForAll(✨), BUDDY, LLaGA, GraphMAE, Prodigy, CSTAG. Thanks for their sharing!