Skip to content

NIPS 24: Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights

License

Notifications You must be signed in to change notification settings

CurryTang/TSGFM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code and Datasets for Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights

This is the code repo accompanying our paper "Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights."

We implement the following graph foundation model building blocks.

  • Graph prompt models (OneForAll, Prodigy)
  • GraphLLM (LLaGA)
  • Graph Self-supervised learning (GraphMAE, BGRL, DGI, and so on)
  • Link prediction-specific models, including BUDDY and SEAL

We support the following two scenarios.

  • Co-training: Pre-training on a set of datasets and testing on the same ones
  • Pre-training: Pre-training on a set of datasets and testing on unseen ones

Install

pip install -r requirements.txt

Datasets

We follow OneForAll's way of managing the datasets. We support the following datasets.

Name #Graphs #Nodes #Edges Domains Tasks #classes
Cora 1 2708 10556 CS Citation Node, Link 7
CiteSeer 1 3186 8450 CS Citation Node, Link 6
Arxiv 1 169343 2315598 CS Citation Node, Link 40
Arxiv23 1 46198 77726 CS Citation Node, Link 40
History 1 41551 503180 E-commerce Node, Link 12
Child 1 76875 2325044 E-commerce Node, Link 24
Computers 1 87229 1256548 E-commerce Node, Link 10
Photo 1 48362 873782 E-commerce Node, Link 12
Sportsfit 1 173055 3020134 E-commerce Node, Link 13
Products 1 316513 19337722 E-commerce Node, Link 39
Amazon Ratings 1 24492 186100 E-commerce Node, Link 5
Pubmed 1 19717 88648 Bio Citation Node, Link 3
WikiCS 1 11701 431726 Knowledge Node, Link 10
Tolokers 1 11758 1038000 Anomaly Node, Link 2
DBLP 1 14376 431326 CS Citation Node, Link 4
CheMBL 365065 26 112 Biology Graph 1048
PCBA 437092 26 56 Biology Graph 128
HIV 41127 26 55 Biology Graph 2
Tox21 7831 19 39 Biology Graph 12
Bace 1513 34 74 Biology Graph 2
Bbbp 2039 24 52 Biology Graph 2
Muv 93087 24 53 Biology Graph 17
Toxcast 8575 19 39 Biology Graph 588

The processed file versions can be achieved from the following link.

Structures of the processed files:

  • cache_data_{llm encoder name} (for example, minilm)
    • dataset_name
      • processed
        • data.pt
        • geometric_data_processed.pt
        • pre_filter.pt
        • pre_transform.pt
        • texts.pkl

geometric_data_processed.pt is the core storage object, and node_text_feat stores the processed node features. data.pt contains the index file used to query the attributes stored in geometric_data_processed.pt. A comprehensive introduction of each column can be found in OneForAll's repo.

To prepare the data, it's okay to generate all raw files yourself (run oneforall for 1 epoch, including all datasets). I recommend you use the preprocessed files directly and unzip them to the main directory.

Code Structures

Directories

  • configs: Directory for setting the task/dataset for OneForAll. Add new datasets here
  • data: data utility files/generation files using the OneForAll data interface
  • gp: graph utility files from the original OneForAll repo
  • graphllm: utility files for LLaGA
  • graphmae: utility files for graphmae
  • link: utility files for BUDDY
  • models: model implementations
  • prodigy: prodigy files
  • subgcon: utility files/data files for self-supervised learning

Main entries

  • eval_pretrain_*, eval_res: main files for LLaGA
  • fulllink.py: main files for GCN link prediction
  • linkpred.py: main files for BUDDY/SEAL
  • run_cdm: main files for OFA
  • sslmain: main files for SSL
  • simplerlr: main files for simpleSBERT

Reproduce the results

OneForAll

  • Co-training setting: just set up a config file similar to demo/e2e_all_config.yaml
  • Pre-training setting: when loading the pre-trained model, use gnn_load_path.

LLaGA

  1. Use llm_train.sh to generate checkpoints
  2. Use llm_eval.sh or llm_eval_link.sh to generate the answer files for node/link-level tasks. For example, bash llm_eval.sh citeseer nc ./checkpoints/llaga-mistral-7b-hf-sbert-4-hop-token-linear-cora.3-citeseer.4-pubmed.3-nc-lp-projector/ citationcross
  3. Use llmres.sh to calculate the results

GCN-link

python3 fulllink.py --pre_train_datasets "cora-link" "citeseer-link" "pubmed-link" "arxiv-link" "arxiv23-link" "bookhis-link" "bookchild-link" "sportsfit-link" "products-link" "elecomp-link" "elephoto-link" --encoder gcn --num_layers 3 --num_hidden 128 --batch_size 512

BUDDY/SEAL

python3 linkpred.py --pre_train_datasets cora citeseer arxiv arxiv23 bookhis bookchild elecomp elephoto sportsfit products pubmed wikics --model BUDDY --cache_subgraph_features --max_hash_hops 3 --epochs 50
python3 linkpred.py --pre_train_datasets cora --model SEALGCN --hidden_channels 256 --num_hops 3

SSL

Check the best hyper-parameter in the paper (use cpuinf can do full-batch inference on CPU, which is faster on our environment)

python3 sslmain.py --pre_train_datasets arxiv sportsfit products --method graphmae --num_heads 4 --num_out_heads 1 --num_layers 3 --num_hidden 1024 --residual --in_drop 0.5 --attn_drop 0.5 --norm 'batchnorm' --lr 0.01 --weight_decay 1e-5 --activation 'prelu' --mask_rate 0.75 --drop_edge_rate 0 --replace_rate 0.2 --scheduler --lrtype 'cosine' --save_model --max_epoch 5 --subgraph_size 1024 --warmup --cpuinf

Prodigy

pretrain on arxiv

python experiments/run_single_experiment.py --dataset arxiv --root <root> --original_features False -ds_cap 24000 -val_cap 100 -test_cap 100 --emb_dim 256 --epochs 1 -ckpt_step 1000 -layers S2,U,M -lr 3e-4 -way 30 -shot 3 -qry 4 -eval_step 5000 -task cls_nm_sb -bs 1 -aug ND0.5,NZ0.5 -aug_test True -attr 1000 --device 0 --prefix MAG_PT_PRODIGY

test on History

python3 experiments/run_single_experiment.py --dataset bookhis --original_features True -ds_cap 300 -val_cap 300 -test_cap 300 --emb_dim 256 --epochs 1 -ckpt_step 1000 -layers S2,U,M -lr 3e-4 -way 12 -shot 3 -qry 4 -eval_step 50 -task classification  -bs 1 -aug ND0.5,NZ0.5 -aug_test True -attr 1000 --device 0 --prefix test --root <root> -pretrained <ckpt> --eval_only True

Acknowledgements

This code repo is heavily based on OneForAll(✨), BUDDY, LLaGA, GraphMAE, Prodigy, CSTAG. Thanks for their sharing!

About

NIPS 24: Text-space Graph Foundation Models: Comprehensive Benchmarks and New Insights

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages