Code for the paper on conditioning normalizing flows for the generation of configurations in a parallel path sampling scheme. The publication can be found here:
Falkner, S., Coretti, A., Romano, S., Geissler, P., & Dellago, C. (2022). Conditioning Normalizing Flows for Rare Event Sampling (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2207.14530
-
Noé, F., Olsson, S., Köhler, J., & Wu, H. (2019). Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science, 365(6457), eaaw1147. https://doi.org/10.1126/science.aaw1147
-
Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided Image Generation with Conditional Invertible Neural Networks. ArXiv. http://arxiv.org/abs/1907.02392
-
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using Real NVP. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings. http://arxiv.org/abs/1605.08803
Installation is recommended using a scientific Python distribution such as anaconda (https://www.anaconda.com).
-
Python >= 3.6 https://www.python.org
-
PyTorch https://pytorch.org/
-
Numba http://numba.pydata.org/
-
NumPy https://www.numpy.org/
-
SciPy https://www.scipy.org/
-
PyYAML https://pyyaml.org/
-
matplotlib https://matplotlib.org/
For the examples you will also need:
- Jupyter https://jupyter.org/
For free energy calculations PyEMMA is required: 8) PyEMMA http://emma-project.org/latest/
Head to the root folder of the project and type pip install .
.
The installation script checks automatically for the packages mentioned above except for pytorch and the example dependencies.
PyTorch needs to be installed manually. Instructions can be found at https://pytorch.org/.