Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

a bit fix of readme and small refinement #282

Merged
merged 1 commit into from
Dec 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions ncnn/segment.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,14 +51,17 @@ void inference() {
mod.opt.use_vulkan_compute = 1;
mod.set_vulkan_device(1);
#endif
mod.load_param(mod_param.c_str());
mod.load_model(mod_model.c_str());
// ncnn enable fp16 by default, so we do not need these options
// int8 depends on the model itself, so we do not set here
// bool use_fp16 = false;
// mod.opt.use_fp16_packed = use_fp16;
// mod.opt.use_fp16_storage = use_fp16;
// mod.opt.use_fp16_arithmetic = use_fp16;
mod.opt.use_winograd_convolution = true;

// we should set opt before load model
mod.load_param(mod_param.c_str());
mod.load_model(mod_model.c_str());

// load image, and copy to ncnn mat
cv::Mat im = cv::imread(impth);
Expand Down
4 changes: 2 additions & 2 deletions tensorrt/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ Then we can use either c++ or python to compile the model and run inference.
* ubuntu 18.04
* nvidia Tesla T4 gpu, driver newer than 450.80
* cuda 11.3, cudnn 8
* cmake 3.17.1
* cmake 3.22.0
* opencv built from source
* tensorrt 8.2.5.1

Expand Down Expand Up @@ -49,7 +49,7 @@ $ ./segment compile /path/to/onnx.model /path/to/saved_model.trt --fp16
```
Building an int8 engine is also supported. Firstly, you should make sure your gpu support int8 inference, or you model will not be faster than fp16/fp32. Then you should prepare certain amount of images for int8 calibration. In this example, I use train set of cityscapes for calibration. The command is like this:
```
$ calibrate_int8 # delete this if exists
$ rm calibrate_int8 # delete this if exists
$ ./segment compile /path/to/onnx.model /path/to/saved_model.trt --int8 /path/to/BiSeNet/datasets/cityscapes /path/to/BiSeNet/datasets/cityscapes/train.txt
```
With the above commands, we will have an tensorrt engine named `saved_model.trt` generated.
Expand Down
6 changes: 5 additions & 1 deletion tools/train_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import random
import logging
import time
import json
import argparse
import numpy as np
from tabulate import tabulate
Expand Down Expand Up @@ -55,7 +56,10 @@ def set_model(lb_ignore=255):
net = model_factory[cfg.model_type](cfg.n_cats)
if not args.finetune_from is None:
logger.info(f'load pretrained weights from {args.finetune_from}')
net.load_state_dict(torch.load(args.finetune_from, map_location='cpu'))
msg = net.load_state_dict(torch.load(args.finetune_from,
map_location='cpu'), strict=False)
logger.info('\tmissing keys: ' + json.dumps(msg.missing_keys))
logger.info('\tunexpected keys: ' + json.dumps(msg.unexpected_keys))
if cfg.use_sync_bn: net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
net.cuda()
net.train()
Expand Down