Skip to content

Commit

Permalink
Merge #129
Browse files Browse the repository at this point in the history
129: Merge mse tables->1 file, print mse table post run r=charleskawczynski a=charleskawczynski

This PR should be a nice quality of life improvement for updating the MSE tables.

Previously, we had to click into each tab (for each case) and copy the table to the corresponding file

With this PR: a new job prints the entire mse table file contents after all cases are complete--so we only need to copy these file contents into the single mse tables file.

Co-authored-by: Charles Kawczynski <[email protected]>
  • Loading branch information
bors[bot] and charleskawczynski authored Aug 16, 2021
2 parents f034f07 + 267a438 commit 2fa9779
Show file tree
Hide file tree
Showing 15 changed files with 281 additions and 136 deletions.
12 changes: 12 additions & 0 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,18 @@ steps:
queue: central
slurm_ntasks: 1

- wait: ~
continue_on_failure: true

- label: ":robot_face: Print new mse tables"
key: "cpu_print_new_mse"
command:
- "julia --color=yes --project utils/print_new_mse.jl"
agents:
config: cpu
queue: central
slurm_ntasks: 1

- wait

- label: ":robot_face: Move main results"
Expand Down
19 changes: 6 additions & 13 deletions integration_tests/ARM_SGP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,21 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 3.7029179410890994e-01
best_mse["updraft_area"] = 2.0066768291734027e+03
best_mse["updraft_w"] = 3.3021026158842852e+02
best_mse["updraft_qt"] = 1.3362770693863471e+01
best_mse["updraft_thetal"] = 2.7682689602916721e+01
best_mse["u_mean"] = 8.7998547277817892e+01
best_mse["tke_mean"] = 6.5902888656341383e+02
best_mse["temperature_mean"] = 1.4835874987504939e-04
best_mse["ql_mean"] = 2.5289195067821601e+02
best_mse["thetal_mean"] = 1.5194012840291993e-04
best_mse["Hvar_mean"] = 3.6200709711739819e+03
best_mse["QTvar_mean"] = 2.5763919693088642e+03
best_mse = all_best_mse["ARM_SGP"]

@testset "ARM_SGP" begin
case_name = "ARM_SGP"
Expand All @@ -40,6 +29,10 @@ best_mse["QTvar_mean"] = 2.5763919693088642e+03
t_stop = 11 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
20 changes: 6 additions & 14 deletions integration_tests/Bomex.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,22 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 9.7923185944396543e-02
best_mse["updraft_area"] = 6.9825342418932712e+02
best_mse["updraft_w"] = 3.2817058320329416e+01
best_mse["updraft_qt"] = 4.2756945036338720e+00
best_mse["updraft_thetal"] = 2.1546731002204076e+01
best_mse["v_mean"] = 6.8320914112603603e+01
best_mse["u_mean"] = 5.3308019185027945e+01
best_mse["tke_mean"] = 4.2619460317296351e+01
best_mse["temperature_mean"] = 4.2264960813453363e-05
best_mse["ql_mean"] = 6.1078690857394591e+00
best_mse["thetal_mean"] = 4.3075669150884208e-05
best_mse["Hvar_mean"] = 1.4320193838595969e+03
best_mse["QTvar_mean"] = 7.4620132655591669e+02
best_mse = all_best_mse["Bomex"]

@testset "Bomex" begin
case_name = "Bomex"
Expand All @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 7.4620132655591669e+02
t_stop = 6 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
20 changes: 6 additions & 14 deletions integration_tests/DYCOMS_RF01.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,22 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 1.6511493474924487e-02
best_mse["ql_mean"] = 5.2388152463600228e+00
best_mse["updraft_area"] = 2.3937655332711191e+02
best_mse["updraft_w"] = 4.2950818025166271e+00
best_mse["updraft_qt"] = 1.1670622064912242e+00
best_mse["updraft_thetal"] = 1.2740701334370282e+01
best_mse["v_mean"] = 3.9746921720562241e+01
best_mse["u_mean"] = 3.7046560343565211e+01
best_mse["tke_mean"] = 1.4700070268008988e+01
best_mse["temperature_mean"] = 2.1532443073348772e-05
best_mse["thetal_mean"] = 2.2397858591617206e-05
best_mse["Hvar_mean"] = 8.2677316059854074e+03
best_mse["QTvar_mean"] = 6.0266525107346490e+02
best_mse = all_best_mse["DYCOMS_RF01"]

key = "Hvar_mean"
@testset "DYCOMS_RF01" begin
Expand All @@ -42,6 +30,10 @@ key = "Hvar_mean"
t_stop = 4 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
15 changes: 6 additions & 9 deletions integration_tests/DryBubble.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["updraft_area"] = 6.8552893703976156e+02
best_mse["updraft_w"] = 1.6342412689086376e+02
best_mse["updraft_thetal"] = 3.9780037295736014e-05
best_mse["u_mean"] = 1.9502448099351233e-27
best_mse["tke_mean"] = 1.9987696066076023e+05
best_mse["temperature_mean"] = 3.2539779149902821e-05
best_mse["thetal_mean"] = 2.5848228458179228e-05
best_mse["Hvar_mean"] = 7.3771757968047757e+02
best_mse = all_best_mse["DryBubble"]

@testset "DryBubble" begin
case_name = "DryBubble"
Expand All @@ -30,6 +23,10 @@ best_mse["Hvar_mean"] = 7.3771757968047757e+02
computed_mse =
compute_mse_wrapper(case_name, best_mse, ds_tc_filename; plot_comparison = true, t_start = 900, t_stop = 1000)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
16 changes: 6 additions & 10 deletions integration_tests/GABLS.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,18 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()

best_mse["updraft_thetal"] = 5.0248696023347037e+00
best_mse["v_mean"] = 4.4593534457868529e+00
best_mse["u_mean"] = 9.6414943665200035e+00
best_mse["tke_mean"] = 2.4674095133951375e+00
best_mse["temperature_mean"] = 8.8584843672667532e-06
best_mse["thetal_mean"] = 8.7856734759460943e-06
best_mse["Hvar_mean"] = 1.2892749042279126e+01
best_mse["QTvar_mean"] = 4.4456710317999498e-01
best_mse = all_best_mse["GABLS"]

@testset "GABLS" begin
case_name = "GABLS"
Expand All @@ -37,6 +29,10 @@ best_mse["QTvar_mean"] = 4.4456710317999498e-01
t_stop = 9 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
15 changes: 6 additions & 9 deletions integration_tests/Nieuwstadt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["updraft_area"] = 5.9567286602931904e+02
best_mse["updraft_w"] = 2.6450205443296568e+01
best_mse["updraft_thetal"] = 3.0475209174359087e+01
best_mse["u_mean"] = 1.5244498152508007e+02
best_mse["tke_mean"] = 7.3585026092564277e+01
best_mse["temperature_mean"] = 1.1872218655217143e-05
best_mse["thetal_mean"] = 1.2035241147904184e-05
best_mse["Hvar_mean"] = 1.8640506843913366e+02
best_mse = all_best_mse["Nieuwstadt"]

@testset "Nieuwstadt" begin
case_name = "Nieuwstadt"
Expand All @@ -36,6 +29,10 @@ best_mse["Hvar_mean"] = 1.8640506843913366e+02
t_stop = 8 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
20 changes: 6 additions & 14 deletions integration_tests/Rico.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,22 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 3.6183738581707564e-01
best_mse["updraft_area"] = 1.9158389580482219e+03
best_mse["updraft_w"] = 1.7058718197542106e+02
best_mse["updraft_qt"] = 1.5449827839901584e+01
best_mse["updraft_thetal"] = 6.3602297256853468e+01
best_mse["v_mean"] = 1.0630514621668171e+02
best_mse["u_mean"] = 1.1443613156137732e+02
best_mse["tke_mean"] = 3.1910880264617197e+02
best_mse["temperature_mean"] = 1.8245777363727451e-04
best_mse["ql_mean"] = 2.2808514972615623e+02
best_mse["thetal_mean"] = 1.5458919462734390e-04
best_mse["Hvar_mean"] = 1.0744099006973258e+04
best_mse["QTvar_mean"] = 4.7454844707739849e+03
best_mse = all_best_mse["Rico"]

@testset "Rico" begin
case_name = "Rico"
Expand All @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 4.7454844707739849e+03
t_stop = 24 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
19 changes: 6 additions & 13 deletions integration_tests/SP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,21 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 3.5073036121827599e+00
best_mse["updraft_area"] = 3.9071034998892715e+00
best_mse["updraft_w"] = 9.3648209541424188e-01
best_mse["updraft_qt"] = 1.3868858637940826e+00
best_mse["updraft_thetal"] = 1.0515272505644156e-01
best_mse["v_mean"] = 4.6000262200176228e-01
best_mse["u_mean"] = 7.3724093159961937e-05
best_mse["tke_mean"] = 4.7833665685836724e-01
best_mse["temperature_mean"] = 6.8550010657332516e-07
best_mse["thetal_mean"] = 5.1299556226337377e-07
best_mse["Hvar_mean"] = 3.1719859098824500e+01
best_mse["QTvar_mean"] = 3.9762684439302052e+00
best_mse = all_best_mse["SP"]

@testset "SP" begin
case_name = "SP"
Expand All @@ -34,6 +23,10 @@ best_mse["QTvar_mean"] = 3.9762684439302052e+00
computed_mse =
compute_mse_wrapper(case_name, best_mse, ds_tc_filename; plot_comparison = true, t_start = 0, t_stop = 2 * 3600)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
17 changes: 6 additions & 11 deletions integration_tests/Soares.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,19 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 1.4966760733610701e-01
best_mse["updraft_area"] = 4.4752734228297282e+02
best_mse["updraft_w"] = 2.1338748581172648e+01
best_mse["updraft_qt"] = 1.1050242532811241e+01
best_mse["updraft_thetal"] = 2.2394553996747693e+01
best_mse["u_mean"] = 7.3068371493591656e+02
best_mse["tke_mean"] = 5.9234734475094214e+01
best_mse["temperature_mean"] = 1.1583915526092593e-05
best_mse["thetal_mean"] = 1.2172922371309679e-05
best_mse["Hvar_mean"] = 2.2601616515636465e+02
best_mse = all_best_mse["Soares"]

@testset "Soares" begin
case_name = "Soares"
Expand All @@ -38,6 +29,10 @@ best_mse["Hvar_mean"] = 2.2601616515636465e+02
t_stop = 8 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
20 changes: 6 additions & 14 deletions integration_tests/TRMM_LBA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,25 +8,13 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

# Note: temperatures in this case become extremely low.
CLIMAParameters.Planet.T_freeze(::EarthParameterSet) = 100.0

best_mse = OrderedDict()
best_mse["qt_mean"] = 2.1180570149373197e+00
best_mse["updraft_area"] = 2.2911123097125790e+04
best_mse["updraft_w"] = 9.9122631422628353e+02
best_mse["updraft_qt"] = 3.0750107437154107e+01
best_mse["updraft_thetal"] = 1.1001770046016014e+02
best_mse["v_mean"] = 2.9250578870751696e+02
best_mse["u_mean"] = 1.6873177041648653e+03
best_mse["tke_mean"] = 9.3810901861977175e+02
best_mse["temperature_mean"] = 8.1897112533893871e-04
best_mse["ql_mean"] = 7.3150520783875129e+02
best_mse["thetal_mean"] = 8.2746696205323478e-03
best_mse["Hvar_mean"] = 3.5185010182273427e+03
best_mse["QTvar_mean"] = 1.7745546315637387e+03
best_mse = all_best_mse["TRMM_LBA"]

@testset "TRMM_LBA" begin
case_name = "TRMM_LBA"
Expand All @@ -44,6 +32,10 @@ best_mse["QTvar_mean"] = 1.7745546315637387e+03
t_stop = 6 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
20 changes: 6 additions & 14 deletions integration_tests/life_cycle_Tan2018.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,22 +8,10 @@ using Test
include(joinpath("utils", "main.jl"))
include(joinpath("utils", "generate_namelist.jl"))
include(joinpath("utils", "compute_mse.jl"))
include(joinpath("utils", "mse_tables.jl"))
using .NameList

best_mse = OrderedDict()
best_mse["qt_mean"] = 5.2649429859732335e-03
best_mse["ql_mean"] = 8.3701130817214975e-01
best_mse["updraft_area"] = 7.0432677991444692e-01
best_mse["updraft_w"] = 5.8558890484998805e-01
best_mse["updraft_qt"] = 1.1615774284759468e-01
best_mse["updraft_thetal"] = 6.2885863821116435e-05
best_mse["v_mean"] = 2.4748668316753225e-01
best_mse["u_mean"] = 7.1361729071471190e-04
best_mse["tke_mean"] = 2.0664613818639557e-01
best_mse["temperature_mean"] = 2.5719773912461363e-06
best_mse["thetal_mean"] = 2.4566431564965449e-06
best_mse["Hvar_mean"] = 2.1515252048343000e+03
best_mse["QTvar_mean"] = 1.1458013034475746e+03
best_mse = all_best_mse["life_cycle_Tan2018"]

@testset "life_cycle_Tan2018" begin
case_name = "life_cycle_Tan2018"
Expand All @@ -41,6 +29,10 @@ best_mse["QTvar_mean"] = 1.1458013034475746e+03
t_stop = 6 * 3600,
)

open("computed_mse_$case_name.json", "w") do io
JSON.print(io, computed_mse)
end

for k in keys(best_mse)
test_mse(computed_mse, best_mse, k)
end
Expand Down
Loading

0 comments on commit 2fa9779

Please sign in to comment.