Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Random Feature-based CES #194

Merged
merged 1 commit into from
May 5, 2023
Merged

Random Feature-based CES #194

merged 1 commit into from
May 5, 2023

Conversation

odunbar
Copy link
Collaborator

@odunbar odunbar commented Oct 18, 2022

Purpose

Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using RandomFeatures.jl

Closes #164

Content

  • Interfaces with the currently registered RandomFeatures.jl
  • adds ScalarRandomFeatureInterface as a MachineLearningTool
  • adds VectorRandomFeatureInterface as a MachineLearningTool
  • new example examples/Emulator/RandomFeature/optimize_and_plot_RF.jl
  • new example examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl
  • new example examples/Lorenz/calibrate.jl
  • new example examples/Lorenz/emulate_sample.jl

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

  • new example examples/GCM/emulate_sample_script.jl though currently just the emulation!

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)

  1. GPR trains an output_dim-length vector of scalar GPRs,
  2. Scalar RFR SVD replaces the vector of scalar GPRs, with a vector of scalar RFRs,
  3. Vector RFR SVD Diagonal assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
  4. Vector RFR SVD nondiagonal still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
  5. Vector RFR nondiagonal does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

Emulating an R^2 to R^2 function (150 data points)

  1. SVD + Scalar GP (diag in) results

  2. SVD + Scalar RF (nondiag in) results

  3. SVD + vector RF (diag out) results

  4. SVD + vector RF (nondiag out) results

  5. vector RF (diag out) results

  6. vector RF (nondiag out) results

Emulating GCM data R^2 -> R^96, evaluated at a test point

SVD + Scalar RF results

SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])

SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])

No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median

SVD + GP results

Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points

  1. SVD + Scalar GP (diag in) results
  2. SVD + Scalar RF (diag in) results
  3. SVD + Scalar RF (nondiag in) results
  4. SVD + vector RF (nondiag in, diag out) results
  5. SVD + vector RF (nondiag in, nondiag out) results
  6. vector RF (nondiag in, diag out) results
  7. vector RF (nondiag in, nondiag out) results

@codecov
Copy link

codecov bot commented Nov 11, 2022

Codecov Report

Patch coverage: 5.82% and project coverage change: -38.88 ⚠️

Comparison is base (045ee4a) 88.65% compared to head (1ddc959) 49.78%.

❗ Current head 1ddc959 differs from pull request most recent head c8a993c. Consider uploading reports for the commit c8a993c to get more accurate results

Additional details and impacted files
@@             Coverage Diff             @@
##             main     #194       +/-   ##
===========================================
- Coverage   88.65%   49.78%   -38.88%     
===========================================
  Files           4        6        +2     
  Lines         388      697      +309     
===========================================
+ Hits          344      347        +3     
- Misses         44      350      +306     
Impacted Files Coverage Δ
src/ScalarRandomFeature.jl 0.00% <0.00%> (ø)
src/VectorRandomFeature.jl 0.00% <0.00%> (ø)
src/Emulator.jl 86.88% <64.28%> (-6.76%) ⬇️
src/MarkovChainMonteCarlo.jl 79.85% <100.00%> (ø)

... and 1 file with indirect coverage changes

☔ View full report in Codecov by Sentry.
📢 Do you have feedback about the report comment? Let us know in this issue.

@odunbar
Copy link
Collaborator Author

odunbar commented May 3, 2023

Note: Docs build locally, just not with the online setup - which does not dev the local repo.

@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

Unfortunately it is only myself developing the repo currently so merging without review.
Some reassurance, (1) this is a largely standalone feature, (2) it has comprehensive testing, (3) it has some comprehensive examples (4) the API and constructors are documented. A new issue #215 has been opened to schedule the future work,

Use of RF seamlessly in this codebase will still need a little work, but at this point the tool is in a good-to-go state with some reasonable defaults. I'm looking forward to future manageable PRs that will develop on this!

@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

bors r+

bors bot added a commit that referenced this pull request May 5, 2023
194: [WIP] Random Feature-based CES r=odunbar a=odunbar

<!--- THESE LINES ARE COMMENTED -->
## Purpose 
<!--- One sentence to describe the purpose of this PR, refer to any linked issues:
#14 -- this will link to issue 14
Closes #2 -- this will automatically close issue 2 on PR merge
-->
Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using `RandomFeatures.jl`

Closes #164 

## Content
<!---  specific tasks that are currently complete 
- Solution implemented
-->

- Interfaces with the currently registered RandomFeatures.jl 
- adds `ScalarRandomFeatureInterface` as a `MachineLearningTool`
- adds `VectorRandomFeatureInterface` as a `MachineLearningTool`
- new example `examples/Emulator/RandomFeature/optimize_and_plot_RF.jl`
- new example `examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl`
- new example `examples/Lorenz/calibrate.jl`
- new example `examples/Lorenz/emulate_sample.jl`

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

- new example `examples/GCM/emulate_sample_script.jl` though *currently just the emulation!*

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)
1. `GPR` trains an `output_dim`-length vector of scalar GPRs,
2. `Scalar RFR SVD` replaces the vector of scalar GPRs, with a vector of scalar RFRs,
3. `Vector RFR SVD Diagonal` assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
4. `Vector RFR SVD nondiagonal` still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
4. `Vector RFR nondiagonal` does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

### Emulating an R^2 to R^2 function (150 data points)
1) SVD + Scalar GP (diag in) results 
<img src="https://user-images.githubusercontent.com/47412152/192404099-be8d1241-2dd4-4263-ba2a-31de94763abb.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/192404100-62d72ccc-2b36-4ba9-ad36-38bcdf4b9f0f.png" width="300">
2) SVD + Scalar RF (nondiag in) results
<img src="https://user-images.githubusercontent.com/47412152/230235711-6bb0557e-8914-4a43-8f91-f5a144659edc.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230235715-54fb7d5e-fa24-4528-a3fc-27ff7e9aceb8.png" width="300">

3) SVD + vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230229962-c7eefa25-3a57-467c-8ca1-c9ef7b3dbb3e.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230229964-fcfcbe7c-73cd-4837-8db7-5eaa339eaec6.png" width="300">
4) SVD + vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230124-bb50e4db-8ba7-4570-930e-b6504936a1b5.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230128-2422e85a-1100-4422-a52c-8fd32183b7f0.png" width="300">
5) vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230033-618dcfa8-99a7-4462-b31f-e9adf302dc14.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230040-7dad6ce8-b5dc-4057-9693-a71e0a72379c.png" width="300">
6) vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230167-25377c56-c622-493d-bd0e-b98fc672189a.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230169-23c659eb-4218-4b27-9625-94a7fd44a941.png" width="300">


### Emulating GCM data R^2 -> R^96, evaluated at a test point


#### SVD + Scalar RF results
<img src="https://user-images.githubusercontent.com/47412152/219200986-9a5f74e4-5e2a-48cf-8e26-5d66de2e751c.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200996-f5b88c6e-8b51-4df0-acac-187a6a786a78.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201000-afac8c7a-aa9a-4400-93e8-75f560954bba.png" width="150">

#### SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])
<img src="https://user-images.githubusercontent.com/47412152/219200373-7b0e2713-c3db-4891-9012-6852381266b5.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219252222-f75ba2c8-b11a-42eb-aa1c-f2308a775041.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200387-d328a6b6-5f64-4eda-bc7e-3a122054c2a5.png" width="150">

#### SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])
<img src="https://user-images.githubusercontent.com/47412152/220444681-20b3ef41-5347-4406-afd6-ffa8cfc1e1b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444689-92f24b34-6937-4e19-b733-2d1b263ca9f7.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444685-70f88334-3c32-438e-8534-e4ca0a1c24d2.png" width="150"> 


#### No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median
<img src="https://user-images.githubusercontent.com/47412152/235567696-4c5665b1-33db-4c83-a554-f003e5e015b6.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567703-0fae36f9-e49b-4cfc-b1b4-16a313af51b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567706-1d9513f7-ec37-4fad-b824-a3c62b7759d0.png" width="150"> 

#### SVD + GP results
<img src="https://user-images.githubusercontent.com/47412152/219201341-13acb758-a444-4e05-98c9-ed6975dbd094.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201347-d5c13d9f-3d63-456b-8059-fea0f31346a0.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201351-fa2a4a61-bf75-4292-8549-8f304f05cebe.png" width="150">


### Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points
1) SVD + Scalar GP (diag in) results 
2) SVD + Scalar RF (diag in) results
3) SVD + Scalar RF (nondiag in) results
4) SVD + vector RF (nondiag in, diag out) results
5) SVD + vector RF (nondiag in, nondiag out) results
6) vector RF (nondiag in, diag out) results
7) vector RF (nondiag in, nondiag out) results

<img src="https://user-images.githubusercontent.com/47412152/236000320-bbf88ee3-6de7-4e8e-8797-13f48696337a.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364924-c41dd024-e56e-4506-ad19-2fc324d0db61.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364926-f74d9467-7083-4fb9-8c89-b6ea4ab8aad3.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364930-a0424381-ccc5-472c-b85f-e24aec7319f0.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364932-3cb2e6c6-0f5b-4544-9916-cddfcbd3c882.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364927-b05e1bc8-0430-4db8-97dc-29b0fce0f305.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364929-5e78ceb3-07e9-4230-95b1-2e638dab1ce3.png" width="175"> 


<!---
Review checklist

I have:
- followed the codebase contribution guide: https://clima.github.io/ClimateMachine.jl/latest/Contributing/
- followed the style guide: https://clima.github.io/ClimateMachine.jl/latest/DevDocs/CodeStyle/
- followed the documentation policy: https://github.com/CliMA/policies/wiki/Documentation-Policy
- checked that this PR does not duplicate an open PR.

In the Content, I have included 
- relevant unit tests, and integration tests, 
- appropriate docstrings on all functions, structs, and modules, and included relevent documentation.

-->


Co-authored-by: odunbar <[email protected]>
@bors
Copy link
Contributor

bors bot commented May 5, 2023

Build failed:

  • docs-build

@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

bors r+

bors bot added a commit that referenced this pull request May 5, 2023
194: [WIP] Random Feature-based CES r=odunbar a=odunbar

<!--- THESE LINES ARE COMMENTED -->
## Purpose 
<!--- One sentence to describe the purpose of this PR, refer to any linked issues:
#14 -- this will link to issue 14
Closes #2 -- this will automatically close issue 2 on PR merge
-->
Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using `RandomFeatures.jl`

Closes #164 

## Content
<!---  specific tasks that are currently complete 
- Solution implemented
-->

- Interfaces with the currently registered RandomFeatures.jl 
- adds `ScalarRandomFeatureInterface` as a `MachineLearningTool`
- adds `VectorRandomFeatureInterface` as a `MachineLearningTool`
- new example `examples/Emulator/RandomFeature/optimize_and_plot_RF.jl`
- new example `examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl`
- new example `examples/Lorenz/calibrate.jl`
- new example `examples/Lorenz/emulate_sample.jl`

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

- new example `examples/GCM/emulate_sample_script.jl` though *currently just the emulation!*

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)
1. `GPR` trains an `output_dim`-length vector of scalar GPRs,
2. `Scalar RFR SVD` replaces the vector of scalar GPRs, with a vector of scalar RFRs,
3. `Vector RFR SVD Diagonal` assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
4. `Vector RFR SVD nondiagonal` still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
4. `Vector RFR nondiagonal` does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

### Emulating an R^2 to R^2 function (150 data points)
1) SVD + Scalar GP (diag in) results 
<img src="https://user-images.githubusercontent.com/47412152/192404099-be8d1241-2dd4-4263-ba2a-31de94763abb.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/192404100-62d72ccc-2b36-4ba9-ad36-38bcdf4b9f0f.png" width="300">
2) SVD + Scalar RF (nondiag in) results
<img src="https://user-images.githubusercontent.com/47412152/230235711-6bb0557e-8914-4a43-8f91-f5a144659edc.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230235715-54fb7d5e-fa24-4528-a3fc-27ff7e9aceb8.png" width="300">

3) SVD + vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230229962-c7eefa25-3a57-467c-8ca1-c9ef7b3dbb3e.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230229964-fcfcbe7c-73cd-4837-8db7-5eaa339eaec6.png" width="300">
4) SVD + vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230124-bb50e4db-8ba7-4570-930e-b6504936a1b5.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230128-2422e85a-1100-4422-a52c-8fd32183b7f0.png" width="300">
5) vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230033-618dcfa8-99a7-4462-b31f-e9adf302dc14.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230040-7dad6ce8-b5dc-4057-9693-a71e0a72379c.png" width="300">
6) vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230167-25377c56-c622-493d-bd0e-b98fc672189a.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230169-23c659eb-4218-4b27-9625-94a7fd44a941.png" width="300">


### Emulating GCM data R^2 -> R^96, evaluated at a test point


#### SVD + Scalar RF results
<img src="https://user-images.githubusercontent.com/47412152/219200986-9a5f74e4-5e2a-48cf-8e26-5d66de2e751c.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200996-f5b88c6e-8b51-4df0-acac-187a6a786a78.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201000-afac8c7a-aa9a-4400-93e8-75f560954bba.png" width="150">

#### SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])
<img src="https://user-images.githubusercontent.com/47412152/219200373-7b0e2713-c3db-4891-9012-6852381266b5.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219252222-f75ba2c8-b11a-42eb-aa1c-f2308a775041.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200387-d328a6b6-5f64-4eda-bc7e-3a122054c2a5.png" width="150">

#### SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])
<img src="https://user-images.githubusercontent.com/47412152/220444681-20b3ef41-5347-4406-afd6-ffa8cfc1e1b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444689-92f24b34-6937-4e19-b733-2d1b263ca9f7.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444685-70f88334-3c32-438e-8534-e4ca0a1c24d2.png" width="150"> 


#### No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median
<img src="https://user-images.githubusercontent.com/47412152/235567696-4c5665b1-33db-4c83-a554-f003e5e015b6.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567703-0fae36f9-e49b-4cfc-b1b4-16a313af51b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567706-1d9513f7-ec37-4fad-b824-a3c62b7759d0.png" width="150"> 

#### SVD + GP results
<img src="https://user-images.githubusercontent.com/47412152/219201341-13acb758-a444-4e05-98c9-ed6975dbd094.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201347-d5c13d9f-3d63-456b-8059-fea0f31346a0.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201351-fa2a4a61-bf75-4292-8549-8f304f05cebe.png" width="150">


### Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points
1) SVD + Scalar GP (diag in) results 
2) SVD + Scalar RF (diag in) results
3) SVD + Scalar RF (nondiag in) results
4) SVD + vector RF (nondiag in, diag out) results
5) SVD + vector RF (nondiag in, nondiag out) results
6) vector RF (nondiag in, diag out) results
7) vector RF (nondiag in, nondiag out) results

<img src="https://user-images.githubusercontent.com/47412152/236000320-bbf88ee3-6de7-4e8e-8797-13f48696337a.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364924-c41dd024-e56e-4506-ad19-2fc324d0db61.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364926-f74d9467-7083-4fb9-8c89-b6ea4ab8aad3.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364930-a0424381-ccc5-472c-b85f-e24aec7319f0.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364932-3cb2e6c6-0f5b-4544-9916-cddfcbd3c882.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364927-b05e1bc8-0430-4db8-97dc-29b0fce0f305.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364929-5e78ceb3-07e9-4230-95b1-2e638dab1ce3.png" width="175"> 


<!---
Review checklist

I have:
- followed the codebase contribution guide: https://clima.github.io/ClimateMachine.jl/latest/Contributing/
- followed the style guide: https://clima.github.io/ClimateMachine.jl/latest/DevDocs/CodeStyle/
- followed the documentation policy: https://github.com/CliMA/policies/wiki/Documentation-Policy
- checked that this PR does not duplicate an open PR.

In the Content, I have included 
- relevant unit tests, and integration tests, 
- appropriate docstrings on all functions, structs, and modules, and included relevent documentation.

-->


Co-authored-by: odunbar <[email protected]>
@bors
Copy link
Contributor

bors bot commented May 5, 2023

Build failed:

@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

bors r+

bors bot added a commit that referenced this pull request May 5, 2023
194: [WIP] Random Feature-based CES r=odunbar a=odunbar

<!--- THESE LINES ARE COMMENTED -->
## Purpose 
<!--- One sentence to describe the purpose of this PR, refer to any linked issues:
#14 -- this will link to issue 14
Closes #2 -- this will automatically close issue 2 on PR merge
-->
Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using `RandomFeatures.jl`

Closes #164 

## Content
<!---  specific tasks that are currently complete 
- Solution implemented
-->

- Interfaces with the currently registered RandomFeatures.jl 
- adds `ScalarRandomFeatureInterface` as a `MachineLearningTool`
- adds `VectorRandomFeatureInterface` as a `MachineLearningTool`
- new example `examples/Emulator/RandomFeature/optimize_and_plot_RF.jl`
- new example `examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl`
- new example `examples/Lorenz/calibrate.jl`
- new example `examples/Lorenz/emulate_sample.jl`

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

- new example `examples/GCM/emulate_sample_script.jl` though *currently just the emulation!*

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)
1. `GPR` trains an `output_dim`-length vector of scalar GPRs,
2. `Scalar RFR SVD` replaces the vector of scalar GPRs, with a vector of scalar RFRs,
3. `Vector RFR SVD Diagonal` assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
4. `Vector RFR SVD nondiagonal` still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
4. `Vector RFR nondiagonal` does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

### Emulating an R^2 to R^2 function (150 data points)
1) SVD + Scalar GP (diag in) results 
<img src="https://user-images.githubusercontent.com/47412152/192404099-be8d1241-2dd4-4263-ba2a-31de94763abb.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/192404100-62d72ccc-2b36-4ba9-ad36-38bcdf4b9f0f.png" width="300">
2) SVD + Scalar RF (nondiag in) results
<img src="https://user-images.githubusercontent.com/47412152/230235711-6bb0557e-8914-4a43-8f91-f5a144659edc.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230235715-54fb7d5e-fa24-4528-a3fc-27ff7e9aceb8.png" width="300">

3) SVD + vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230229962-c7eefa25-3a57-467c-8ca1-c9ef7b3dbb3e.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230229964-fcfcbe7c-73cd-4837-8db7-5eaa339eaec6.png" width="300">
4) SVD + vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230124-bb50e4db-8ba7-4570-930e-b6504936a1b5.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230128-2422e85a-1100-4422-a52c-8fd32183b7f0.png" width="300">
5) vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230033-618dcfa8-99a7-4462-b31f-e9adf302dc14.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230040-7dad6ce8-b5dc-4057-9693-a71e0a72379c.png" width="300">
6) vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230167-25377c56-c622-493d-bd0e-b98fc672189a.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230169-23c659eb-4218-4b27-9625-94a7fd44a941.png" width="300">


### Emulating GCM data R^2 -> R^96, evaluated at a test point


#### SVD + Scalar RF results
<img src="https://user-images.githubusercontent.com/47412152/219200986-9a5f74e4-5e2a-48cf-8e26-5d66de2e751c.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200996-f5b88c6e-8b51-4df0-acac-187a6a786a78.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201000-afac8c7a-aa9a-4400-93e8-75f560954bba.png" width="150">

#### SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])
<img src="https://user-images.githubusercontent.com/47412152/219200373-7b0e2713-c3db-4891-9012-6852381266b5.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219252222-f75ba2c8-b11a-42eb-aa1c-f2308a775041.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200387-d328a6b6-5f64-4eda-bc7e-3a122054c2a5.png" width="150">

#### SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])
<img src="https://user-images.githubusercontent.com/47412152/220444681-20b3ef41-5347-4406-afd6-ffa8cfc1e1b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444689-92f24b34-6937-4e19-b733-2d1b263ca9f7.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444685-70f88334-3c32-438e-8534-e4ca0a1c24d2.png" width="150"> 


#### No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median
<img src="https://user-images.githubusercontent.com/47412152/235567696-4c5665b1-33db-4c83-a554-f003e5e015b6.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567703-0fae36f9-e49b-4cfc-b1b4-16a313af51b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567706-1d9513f7-ec37-4fad-b824-a3c62b7759d0.png" width="150"> 

#### SVD + GP results
<img src="https://user-images.githubusercontent.com/47412152/219201341-13acb758-a444-4e05-98c9-ed6975dbd094.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201347-d5c13d9f-3d63-456b-8059-fea0f31346a0.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201351-fa2a4a61-bf75-4292-8549-8f304f05cebe.png" width="150">


### Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points
1) SVD + Scalar GP (diag in) results 
2) SVD + Scalar RF (diag in) results
3) SVD + Scalar RF (nondiag in) results
4) SVD + vector RF (nondiag in, diag out) results
5) SVD + vector RF (nondiag in, nondiag out) results
6) vector RF (nondiag in, diag out) results
7) vector RF (nondiag in, nondiag out) results

<img src="https://user-images.githubusercontent.com/47412152/236000320-bbf88ee3-6de7-4e8e-8797-13f48696337a.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364924-c41dd024-e56e-4506-ad19-2fc324d0db61.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364926-f74d9467-7083-4fb9-8c89-b6ea4ab8aad3.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364930-a0424381-ccc5-472c-b85f-e24aec7319f0.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364932-3cb2e6c6-0f5b-4544-9916-cddfcbd3c882.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364927-b05e1bc8-0430-4db8-97dc-29b0fce0f305.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364929-5e78ceb3-07e9-4230-95b1-2e638dab1ce3.png" width="175"> 


<!---
Review checklist

I have:
- followed the codebase contribution guide: https://clima.github.io/ClimateMachine.jl/latest/Contributing/
- followed the style guide: https://clima.github.io/ClimateMachine.jl/latest/DevDocs/CodeStyle/
- followed the documentation policy: https://github.com/CliMA/policies/wiki/Documentation-Policy
- checked that this PR does not duplicate an open PR.

In the Content, I have included 
- relevant unit tests, and integration tests, 
- appropriate docstrings on all functions, structs, and modules, and included relevent documentation.

-->


Co-authored-by: odunbar <[email protected]>
@bors
Copy link
Contributor

bors bot commented May 5, 2023

Build failed:

@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

bors r+

bors bot added a commit that referenced this pull request May 5, 2023
194: [WIP] Random Feature-based CES r=odunbar a=odunbar

<!--- THESE LINES ARE COMMENTED -->
## Purpose 
<!--- One sentence to describe the purpose of this PR, refer to any linked issues:
#14 -- this will link to issue 14
Closes #2 -- this will automatically close issue 2 on PR merge
-->
Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using `RandomFeatures.jl`

Closes #164 

## Content
<!---  specific tasks that are currently complete 
- Solution implemented
-->

- Interfaces with the currently registered RandomFeatures.jl 
- adds `ScalarRandomFeatureInterface` as a `MachineLearningTool`
- adds `VectorRandomFeatureInterface` as a `MachineLearningTool`
- new example `examples/Emulator/RandomFeature/optimize_and_plot_RF.jl`
- new example `examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl`
- new example `examples/Lorenz/calibrate.jl`
- new example `examples/Lorenz/emulate_sample.jl`

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

- new example `examples/GCM/emulate_sample_script.jl` though *currently just the emulation!*

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)
1. `GPR` trains an `output_dim`-length vector of scalar GPRs,
2. `Scalar RFR SVD` replaces the vector of scalar GPRs, with a vector of scalar RFRs,
3. `Vector RFR SVD Diagonal` assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
4. `Vector RFR SVD nondiagonal` still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
4. `Vector RFR nondiagonal` does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

### Emulating an R^2 to R^2 function (150 data points)
1) SVD + Scalar GP (diag in) results 
<img src="https://user-images.githubusercontent.com/47412152/192404099-be8d1241-2dd4-4263-ba2a-31de94763abb.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/192404100-62d72ccc-2b36-4ba9-ad36-38bcdf4b9f0f.png" width="300">
2) SVD + Scalar RF (nondiag in) results
<img src="https://user-images.githubusercontent.com/47412152/230235711-6bb0557e-8914-4a43-8f91-f5a144659edc.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230235715-54fb7d5e-fa24-4528-a3fc-27ff7e9aceb8.png" width="300">

3) SVD + vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230229962-c7eefa25-3a57-467c-8ca1-c9ef7b3dbb3e.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230229964-fcfcbe7c-73cd-4837-8db7-5eaa339eaec6.png" width="300">
4) SVD + vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230124-bb50e4db-8ba7-4570-930e-b6504936a1b5.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230128-2422e85a-1100-4422-a52c-8fd32183b7f0.png" width="300">
5) vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230033-618dcfa8-99a7-4462-b31f-e9adf302dc14.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230040-7dad6ce8-b5dc-4057-9693-a71e0a72379c.png" width="300">
6) vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230167-25377c56-c622-493d-bd0e-b98fc672189a.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230169-23c659eb-4218-4b27-9625-94a7fd44a941.png" width="300">


### Emulating GCM data R^2 -> R^96, evaluated at a test point


#### SVD + Scalar RF results
<img src="https://user-images.githubusercontent.com/47412152/219200986-9a5f74e4-5e2a-48cf-8e26-5d66de2e751c.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200996-f5b88c6e-8b51-4df0-acac-187a6a786a78.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201000-afac8c7a-aa9a-4400-93e8-75f560954bba.png" width="150">

#### SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])
<img src="https://user-images.githubusercontent.com/47412152/219200373-7b0e2713-c3db-4891-9012-6852381266b5.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219252222-f75ba2c8-b11a-42eb-aa1c-f2308a775041.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200387-d328a6b6-5f64-4eda-bc7e-3a122054c2a5.png" width="150">

#### SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])
<img src="https://user-images.githubusercontent.com/47412152/220444681-20b3ef41-5347-4406-afd6-ffa8cfc1e1b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444689-92f24b34-6937-4e19-b733-2d1b263ca9f7.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444685-70f88334-3c32-438e-8534-e4ca0a1c24d2.png" width="150"> 


#### No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median
<img src="https://user-images.githubusercontent.com/47412152/235567696-4c5665b1-33db-4c83-a554-f003e5e015b6.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567703-0fae36f9-e49b-4cfc-b1b4-16a313af51b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567706-1d9513f7-ec37-4fad-b824-a3c62b7759d0.png" width="150"> 

#### SVD + GP results
<img src="https://user-images.githubusercontent.com/47412152/219201341-13acb758-a444-4e05-98c9-ed6975dbd094.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201347-d5c13d9f-3d63-456b-8059-fea0f31346a0.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201351-fa2a4a61-bf75-4292-8549-8f304f05cebe.png" width="150">


### Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points
1) SVD + Scalar GP (diag in) results 
2) SVD + Scalar RF (diag in) results
3) SVD + Scalar RF (nondiag in) results
4) SVD + vector RF (nondiag in, diag out) results
5) SVD + vector RF (nondiag in, nondiag out) results
6) vector RF (nondiag in, diag out) results
7) vector RF (nondiag in, nondiag out) results

<img src="https://user-images.githubusercontent.com/47412152/236000320-bbf88ee3-6de7-4e8e-8797-13f48696337a.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364924-c41dd024-e56e-4506-ad19-2fc324d0db61.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364926-f74d9467-7083-4fb9-8c89-b6ea4ab8aad3.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364930-a0424381-ccc5-472c-b85f-e24aec7319f0.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364932-3cb2e6c6-0f5b-4544-9916-cddfcbd3c882.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364927-b05e1bc8-0430-4db8-97dc-29b0fce0f305.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364929-5e78ceb3-07e9-4230-95b1-2e638dab1ce3.png" width="175"> 


<!---
Review checklist

I have:
- followed the codebase contribution guide: https://clima.github.io/ClimateMachine.jl/latest/Contributing/
- followed the style guide: https://clima.github.io/ClimateMachine.jl/latest/DevDocs/CodeStyle/
- followed the documentation policy: https://github.com/CliMA/policies/wiki/Documentation-Policy
- checked that this PR does not duplicate an open PR.

In the Content, I have included 
- relevant unit tests, and integration tests, 
- appropriate docstrings on all functions, structs, and modules, and included relevent documentation.

-->


Co-authored-by: odunbar <[email protected]>
@odunbar odunbar changed the title [WIP] Random Feature-based CES Random Feature-based CES May 5, 2023
@bors
Copy link
Contributor

bors bot commented May 5, 2023

Build failed:

update project toml

examples for RF

shuffle data

update example

example to produce comparable figs

updates for compatability with CES 0.2.0 and RF 0.1.0

vector random feature support

added fixes to ensure CES pipeline runs

regularization and lorenz example

format

allows training with fewer features than data

VRFI with SVD, and cholesky options

feature num dep on n

GCM example

replace data

multithreading and rng

add ProgressBars

remove high-level threading for now (takes place within LinAlg solvers)

sbatch script

truth at some points

increased number optimization features default

bugfix reg matrix argument

initial tik-reg for EKI

working TEKI

0 default eki, small tweaks

add logdet complexity

more consistent adding of definiteness

chol/svd

add logdet to scalar learning

shape bug

logdetI

unite common functions in Random Feature, expand Scalar feature learning

extend reverse svd for covs

add diag terms to MatrixNormal description, default to diagonal regularizations rather than pos-def

add diagonal option

trimmed, and added const hp for diag cov

compat with svd truncation, and more standard posdef corrections

added scaling to complexity data

change scalar interface

lorenz 2d statsplot

combine all MLT examples into this

improved interfacing, unification and initial unit testing

condensed into emulate_sample

simplify scalar interface

bug

improved vector interface

reg should be multiplicative! fixed

small edits

update ess.jl

MSE on next ensemble, add input-diag case

inflation

optimizer defaults and cov representation

inflation vec

inflation

utility for ensembles

test pass with new defaults and cov structure

format

format

add RF tests

GP test fails resolved

scalar_optimize_and_plot_RF.jl

with new RF accel

removed some abstract types, compatible with RandomFeatures 0.2.5

format

typo

another typo

compatible with v0.3 RandomFeatures

dispatching over RandomFeatures v0.3.1 multthread options

typo

more flexible priors

compataility for SRF and RF v0.3.1

updates to GCM example scripts

docstrings

docstring API and format

rm duplicate API docs

format

API docs work locally

rename

test pass

format

better messages, bugfix priors for diagonalized options

emulation test scenarios for scalar and vector RF

multithread supp for lorenz example

added cov samples user option, added opt-option for threading in prediction

test

format

Lorenz example config

verbose flag

tests pass

format

test for tullio threading

format

comment api docs until github docs bug fixed

format

try adding manifest

test/RandomFeature/runtests.jl

standardized

standardization in emulation
@odunbar
Copy link
Collaborator Author

odunbar commented May 5, 2023

bors r+

@bors
Copy link
Contributor

bors bot commented May 5, 2023

Build succeeded!

The publicly hosted instance of bors-ng is deprecated and will go away soon.

If you want to self-host your own instance, instructions are here.
For more help, visit the forum.

If you want to switch to GitHub's built-in merge queue, visit their help page.

@bors bors bot merged commit 0766a3d into main May 5, 2023
@bors bors bot deleted the orad/RF branch May 5, 2023 22:38
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Random Feature development
1 participant