Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Regularization & standardization #111

Merged
merged 15 commits into from
Apr 16, 2021
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,5 @@ docs/site/
*.jl.mem
*.vscode*
*.DS_Store
*.jld2
output*
4 changes: 3 additions & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,13 @@ api = ["CalibrateEmulateSample" => [
"Utilities" => "API/Utilities.md"
],
]


examples = ["Lorenz example" => "examples/lorenz_example.md"]

pages = [
"Home" => "index.md",
"Installation instructions" => "installation_instructions.md",
"Examples" => examples,
"API" => api,
]

Expand Down
26 changes: 26 additions & 0 deletions docs/src/examples/lorenz_example.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Lorenz 96 example

We provide the following template for how the tools may be applied.

For small examples typically have 2 files.

- `GModel.jl` Contains the forward map. The inputs should be the so-called free parameters we are interested in learning, and the output should be the measured data
- The example script which contains the inverse problem setup and solve

## The structure of the example script
First we create the data and the setting for the model
1. Set up the forward model.
2. Construct/load the truth data. Store this data conveniently in the `Observations.Obs` object

Then we set up the inverse problem
3. Define the prior distributions. Use the `ParameterDistribution` object
4. Decide on which `process` tool you would like to use (we recommend you begin with `Invesion()`). Then initialize this with the relevant constructor
5. initialize the `EnsembleKalmanProcess` object

Then we solve the inverse problem, in a loop perform the following for as many iterations as required:
7. Obtain the current parameter ensemble
8. Transform them from the unbounded computational space to the physical space
9. call the forward map on the ensemble of parameters, producing an ensemble of measured data
10. call the `update_ensemble!` function to generate a new parameter ensemble based on the new data

One can then obtain the solution, dependent on the `process` type.
3 changes: 2 additions & 1 deletion examples/Lorenz/GModel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@ using DocStringExtensions
using Random
using Distributions
using LinearAlgebra
using DifferentialEquations
#using DifferentialEquations
#using OrdinaryDiffEq
using FFTW

export run_G
Expand Down
126 changes: 92 additions & 34 deletions examples/Lorenz/Lorenz_example.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,27 @@ using CalibrateEmulateSample.ParameterDistributionStorage
using CalibrateEmulateSample.DataStorage
using CalibrateEmulateSample.Observations

rng_seed = 4137
#rng_seed = 4137
#rng_seed = 413798
rng_seed = 2413798
Random.seed!(rng_seed)


function get_standardizing_factors(data::Array{FT,2}) where {FT}
# Input: data size: N_data x N_ensembles
# Ensemble median of the data
norm_factor = median(data,dims=2)
return norm_factor
end

function get_standardizing_factors(data::Array{FT,1}) where {FT}
# Input: data size: N_data*N_ensembles (splatted)
# Ensemble median of the data
norm_factor = median(data)
return norm_factor
end


# Output figure save directory
example_directory = @__DIR__
println(example_directory)
Expand All @@ -45,7 +63,7 @@ end
dynamics = 2 # Transient is 2
# Statistics integration length
# This has to be less than 360 and 360 must be divisible by Ts_days
Ts_days = 90. # Integration length in days
Ts_days = 30. # Integration length in days
# Stats type, which statistics to construct from the L96 system
# 4 is a linear fit over a batch of length Ts_days
# 5 is the mean over a batch of length Ts_days
Expand Down Expand Up @@ -89,8 +107,9 @@ end
#logmean_A, logstd_A = logmean_and_logstd(A_true, 0.2*A_true)

if dynamics == 2
prior_means = [F_true+1.0, A_true+0.5]
prior_stds = [2.0, 0.5*A_true]
#prior_means = [F_true+0.5, A_true+0.5]
prior_means = [F_true, A_true]
prior_stds = [3.0, 0.5*A_true]
d1 = Parameterized(Normal(prior_means[1], prior_stds[1]))
d2 = Parameterized(Normal(prior_means[2], prior_stds[2]))
prior_distns = [d1, d2]
Expand Down Expand Up @@ -124,11 +143,12 @@ dt = 1/64.
# Start of integration
t_start = 800.
# Data collection length
if dynamics==1
T = 2.
else
T = 360. / τc
end
#if dynamics==1
# T = 2.
#else
# T = 360. / τc
#end
T = 360. / τc
# Batch length
Ts = 5. / τc # Nondimensionalize by L96 timescale
# Integration length
Expand Down Expand Up @@ -162,6 +182,7 @@ lorenz_params = GModel.LParams(F_true, ω_true, A_true)
gt = dropdims(GModel.run_G_ensemble(params_true, lorenz_settings), dims=2)

# Compute internal variability covariance
n_samples = 50
if var_prescribe==true
n_samples = 100
yt = zeros(length(gt),n_samples)
Expand All @@ -174,7 +195,6 @@ if var_prescribe==true
end
else
println("Using truth values to compute covariance")
n_samples = 20
yt = zeros(length(gt), n_samples)
for i in 1:n_samples
lorenz_settings_local = GModel.LSettings(dynamics, stats_type, t_start+T*(i-1),
Expand All @@ -188,12 +208,19 @@ else
Γy = cov(yt, dims=2)

println(Γy)
println(size(Γy))
println(rank(Γy))
end


# Construct observation object
truth = Observations.Obs(yt, Γy, data_names)
# Truth sample for EKP
truth_sample = truth.mean
#sample_ind=randperm!(collect(1:n_samples))[1]
#truth_sample = yt[:,sample_ind]
#println("Truth sample:")
#println(sample_ind)
###
### Calibrate: Ensemble Kalman Inversion
###
Expand All @@ -219,6 +246,7 @@ ekiobj = EnsembleKalmanProcessModule.EnsembleKalmanProcess(initial_params,
# EKI iterations
println("EKP inversion error:")
err = zeros(N_iter)
err_params = zeros(N_iter)
for i in 1:N_iter
if log_normal==false
params_i = get_u_final(ekiobj)
Expand All @@ -227,8 +255,10 @@ for i in 1:N_iter
end
g_ens = GModel.run_G_ensemble(params_i, lorenz_settings_G)
EnsembleKalmanProcessModule.update_ensemble!(ekiobj, g_ens)
err[i] = get_error(ekiobj)[end] #mean((params_true - mean(params_i,dims=2)).^2)
println("Iteration: "*string(i)*", Error: "*string(err[i]))
err[i] = get_error(ekiobj)[end]
err_params[i] = mean((params_true - mean(params_i,dims=2)).^2)
println("Iteration: "*string(i)*", Error (data): "*string(err[i]))
println("Iteration: "*string(i)*", Error (params): "*string(err_params[i]))
end

# EKI results: Has the ensemble collapsed toward the truth?
Expand All @@ -246,37 +276,60 @@ end
### Emulate: Gaussian Process Regression
###

# Emulate-sample settings
standardize = true
truncate_svd = 0.95

gppackage = GaussianProcessEmulator.GPJL()
pred_type = GaussianProcessEmulator.YType()

# Standardize the output data
# Use median over all data since all data are the same type
yt_norm = vcat(yt...)
norm_factor = get_standardizing_factors(yt_norm)
println(size(norm_factor))
#norm_factor = vcat(norm_factor...)
norm_factor = fill(norm_factor, size(truth_sample))
println("Standardization factors")
println(norm_factor)

# Get training points from the EKP iteration number in the second input term
N_iter = 5;
input_output_pairs = Utilities.get_training_points(ekiobj, N_iter)
normalized = true

# Default kernel
gpobj = GaussianProcessEmulator.GaussianProcess(input_output_pairs, gppackage;
obs_noise_cov=Γy, normalized=normalized,
noise_learn=false, prediction_type=pred_type)
noise_learn=false,
truncate_svd=truncate_svd, standardize=standardize,
prediction_type=pred_type,
norm_factor=norm_factor)

# Check how well the Gaussian Process regression predicts on the
# true parameters
if log_normal==false
y_mean, y_var = GaussianProcessEmulator.predict(gpobj, reshape(params_true, :, 1),
transform_to_real=true)
else
y_mean, y_var = GaussianProcessEmulator.predict(gpobj, reshape(log.(params_true), :, 1),
transform_to_real=true)
end

println("GP prediction on true parameters: ")
println(vec(y_mean))
println(" GP variance")
println(diag(y_var[1],0))
println("true data: ")
println(truth.mean)
println("GP MSE: ")
println(mean((truth.mean - vec(y_mean)).^2))

#if truncate_svd==1.0
if log_normal==false
y_mean, y_var = GaussianProcessEmulator.predict(gpobj, reshape(params_true, :, 1),
transform_to_real=true)
else
y_mean, y_var = GaussianProcessEmulator.predict(gpobj, reshape(log.(params_true), :, 1),
transform_to_real=true)
end

println("GP prediction on true parameters: ")
println(vec(y_mean))
println(" GP variance")
println(diag(y_var[1],0))
println("true data: ")
if standardize
println(truth.mean ./ norm_factor)
else
println(truth.mean)
end
println("GP MSE: ")
println(mean((truth.mean - vec(y_mean)).^2))
#end
###
### Sample: Markov Chain Monte Carlo
###
Expand All @@ -287,14 +340,17 @@ println("initial parameters: ", u0)

# MCMC parameters
mcmc_alg = "rwm" # random walk Metropolis
svd_flag = true

# First let's run a short chain to determine a good step size
burnin = 0
step = 0.1 # first guess
max_iter = 2000
yt_sample = truth_sample
mcmc_test = MarkovChainMonteCarlo.MCMC(yt_sample, Γy, priors, step, u0, max_iter,
mcmc_alg, burnin, svdflag=true)
mcmc_alg, burnin;
svdflag=svd_flag, standardize=standardize, truncate_svd=truncate_svd,
norm_factor=norm_factor)
new_step = MarkovChainMonteCarlo.find_mcmc_step!(mcmc_test, gpobj, max_iter=max_iter)

# Now begin the actual MCMC
Expand All @@ -305,7 +361,9 @@ burnin = 2000
max_iter = 100000

mcmc = MarkovChainMonteCarlo.MCMC(yt_sample, Γy, priors, new_step, u0, max_iter,
mcmc_alg, burnin, svdflag=true)
mcmc_alg, burnin;
svdflag=svd_flag, standardize=standardize, truncate_svd=truncate_svd,
norm_factor=norm_factor)
MarkovChainMonteCarlo.sample_posterior!(mcmc, gpobj, max_iter)

println("Posterior size")
Expand Down Expand Up @@ -335,11 +393,11 @@ save_directory = figure_save_directory*y_folder
for idx in 1:n_params
if idx == 1
param = "F"
xbounds = [7.95, 8.05]
xbounds = [F_true-1.0, F_true+1.0]
xs = collect(xbounds[1]:(xbounds[2]-xbounds[1])/100:xbounds[2])
elseif idx == 2
param = "A"
xbounds = [2.45, 2.55]
xbounds = [A_true-1.0, A_true+1.0]
xs = collect(xbounds[1]:(xbounds[2]-xbounds[1])/100:xbounds[2])
elseif idx == 3
param = "ω"
Expand Down
Loading