Skip to content

Commit

Permalink
add PlanFilter, PlanSpace of auto planner (PaddlePaddle#37858)
Browse files Browse the repository at this point in the history
* update Planner

* update unitest

* update PlanSpace

* update PlanSpace

* modify set_grad_var_shape

* update code style
  • Loading branch information
Caozhou1995 committed Dec 28, 2021
1 parent a66810e commit d038063
Show file tree
Hide file tree
Showing 5 changed files with 553 additions and 10 deletions.
8 changes: 8 additions & 0 deletions python/paddle/distributed/auto_parallel/cluster.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,6 +351,14 @@ def _generate_machine_id(self):
self._num_machines += 1
return cur_machine_id

def get_all_devices(self, device_type):
devices = []
for machine in self.machines.values():
for device in machine.devices.values():
if device.type == DeviceType[device_type]:
devices.append(device)
return devices

def __str__(self):
str = ""
for machine in self.machines.values():
Expand Down
372 changes: 372 additions & 0 deletions python/paddle/distributed/auto_parallel/planner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,372 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import time
import random
import logging
from functools import reduce
from itertools import chain, product
from collections import OrderedDict

import numpy as np

import paddle
import paddle.distributed.auto_parallel as auto
from .cost_model import estimate_cost
from .dist_op import DistributedOperator
from .process_group import _g_process_group_map
from .process_group import ProcessGroup, get_process_group
from .completion import is_elementwise_like_op
from .operators.common import get_distributed_operator_impl_container
from .utils import update_op_dims_mapping_by_default_dist_impl
from .utils import update_op_dims_mapping_by_elementwise_like_dist_impl
from .dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute

paddle.enable_static()
paddle.seed(123)
random.seed(123)
np.random.seed(123)


class PlanFilter:
@staticmethod
def check_dims_mapping_for_tensor(process_mesh_topology, tensor_shape,
dims_mapping):
valid = True
assert len(tensor_shape) == len(dims_mapping)

for idx, dim_mapping in enumerate(dims_mapping):
if dim_mapping != -1:
if tensor_shape[idx] % process_mesh_topology[
dim_mapping] != 0 or dims_mapping.count(
dim_mapping) > 1:
valid = False
if dim_mapping != -1 and process_mesh_topology[0] == 1:
valid = False

return valid

@staticmethod
def check_dims_mapping_for_op(op, op_dist_attr, vars):
process_mesh = op_dist_attr.process_mesh
assert process_mesh is not None, "The process mesh should not be None."
for var_name in op.input_arg_names:
dims_mapping = op_dist_attr.get_input_dims_mapping(var_name)
if not PlanFilter.check_dims_mapping_for_tensor(
process_mesh.topology, vars[var_name].shape, dims_mapping):
return False
if vars[var_name].is_data and len(dims_mapping) > 1:
for dim in dims_mapping[1:]:
if dim != -1:
return False

for var_name in op.output_arg_names:
dims_mapping = op_dist_attr.get_output_dims_mapping(var_name)
if not PlanFilter.check_dims_mapping_for_tensor(
process_mesh.topology, vars[var_name].shape, dims_mapping):
return False

return True

@staticmethod
def check_dims_mapping_for_special_op(op, op_dist_attr, vars):
if op.type == "layer_norm":
bias_dims_mapping = op_dist_attr.get_input_dims_mapping(
op.input("Bias")[0])
scale_dims_mapping = op_dist_attr.get_input_dims_mapping(
op.input("Scale")[0])
x_dims_mapping = op_dist_attr.get_input_dims_mapping(
op.input("X")[0])
mean_dims_mapping = op_dist_attr.get_output_dims_mapping(
op.output("Mean")[0])
variance_dims_mapping = op_dist_attr.get_output_dims_mapping(
op.output("Variance")[0])
y_dims_mapping = op_dist_attr.get_output_dims_mapping(
op.output("Y")[0])
if x_dims_mapping != y_dims_mapping:
return False

if scale_dims_mapping[0] != x_dims_mapping[-1]:
return False

if bias_dims_mapping[0] != y_dims_mapping[-1]:
return False

if mean_dims_mapping[0] != x_dims_mapping[0]:
return False

if variance_dims_mapping[0] != x_dims_mapping[0]:
return False

return True


class PlanSpace:
not_enum_ops = ["create_py_reader", "create_double_buffer_reader", "read"]
special_vars = [
"lod_tensor_blocking_queue_0", "create_py_reader_0", "double_buffer_0"
]

@staticmethod
def _enum_dims_mapping(process_mesh_topology, visited, path, depth, res,
tensor_shape):
"""Enumerate dims mapping of tensor by the given process_mesh_topology"""
nums = list(range(-1, len(process_mesh_topology)))
if depth == len(tensor_shape):
valid = True
for idx, item in enumerate(path):
if item != -1:
if tensor_shape[idx] % process_mesh_topology[
item] != 0 or path.count(item) > 1:
valid = False
if valid:
res.append(copy.deepcopy(path))
return

for i in range(len(nums)):
if not visited[i]:
if i != 0:
visited[i] = True
path.append(nums[i])
PlanSpace._enum_dims_mapping(process_mesh_topology, visited,
path, depth + 1, res, tensor_shape)
visited[i] = False
path.pop()

@staticmethod
def enum_process_mesh_topology(processes):
"""Enumerate all process meshes with the given processes."""
assert processes >= 1, "The processes must be number and greater than 0."
# compute divisors
divisors = []
for i in range(1, processes + 1):
if processes % i == 0:
divisors.append(i)

# compute valid process mesh
results = []
for i in range(len(divisors) - 1, 0, -1):
result = []
result.append(divisors[i])
if i == len(divisors) - 1:
results.append(copy.deepcopy(result))
continue

j = 1
while j < len(divisors):
if len(result) == 1:
result.append(divisors[j])
elif len(result) == 2:
if processes % (result[0] * result[1]) == 0:
if processes // (result[0] * result[1]) == 1:
results.append(copy.deepcopy(result))
break
else:
result.append(processes // (result[0] * result[1]))
results.append(copy.deepcopy(result))
result.pop(-1)
result.pop(-1)
j += 1
else:
if result[0] * result[1] < processes:
result.pop(-1)
j += 1
else:
break
return results

@staticmethod
def _enum_valid_dist_attr_for_op(program, op, process_mesh):
"""Enumerate the valid distributed attribute for op based on the given process mesh."""
vars = program.global_block().vars
dims_mapping_dict = OrderedDict()
op_valid_dist_attrs = []
dist_op_impl_container = get_distributed_operator_impl_container(
op.type)

# enumerate all valid dims mapping of tensor when process mesh given
for var_name in chain(op.input_arg_names, op.output_arg_names):
visited = [
False
for _ in range(
len(list(range(-1, len(process_mesh.topology)))))
]
depth = 0
path = []
dims_mapping_list = []
PlanSpace._enum_dims_mapping(process_mesh.topology, visited, path,
depth, dims_mapping_list,
vars[var_name].shape)
dims_mapping_dict[var_name] = copy.deepcopy(dims_mapping_list)

# compose dims mapping
composed_dims_mapping_list = list(
product(
*[dims_mapping_dict[key] for key in dims_mapping_dict.keys()]))
for composed_dims_mapping in composed_dims_mapping_list:
op_dist_attr = OperatorDistributedAttribute()
op_dist_attr.process_mesh = process_mesh
var_names = list(dims_mapping_dict.keys())

for idx, dims_mapping in enumerate(composed_dims_mapping):
if var_names[idx] in op.input_arg_names:
op_dist_attr.set_input_dims_mapping(var_names[idx],
dims_mapping)
elif var_names[idx] in op.output_arg_names:
op_dist_attr.set_output_dims_mapping(var_names[idx],
dims_mapping)
else:
raise ValueError(
"The {varname} is not input or output of op {op}.".
format(
varname='var_names[idx]', op='op'))

dist_op = DistributedOperator(op, op_dist_attr)
if dist_op_impl_container is None:
if is_elementwise_like_op(op.type):
changed = True
valid = True
try:
changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
dist_op)
except Exception as e:
valid = False
if valid and not changed:
if PlanFilter.check_dims_mapping_for_op(
op, dist_op.dist_attr, vars
) and PlanFilter.check_dims_mapping_for_special_op(
op, dist_op.dist_attr, vars):
dist_op.dist_attr.impl_idx = -1
op_valid_dist_attrs.append(dist_op.dist_attr)
continue
else:
changed = True
valid = True
try:
changed = update_op_dims_mapping_by_default_dist_impl(
dist_op)
except Exception as e:
valid = False
if valid and not changed:
if PlanFilter.check_dims_mapping_for_op(
op, dist_op.dist_attr, vars
) and PlanFilter.check_dims_mapping_for_special_op(
op, dist_op.dist_attr, vars):
dist_op.dist_attr.impl_idx = -2
op_valid_dist_attrs.append(dist_op.dist_attr)
continue

# if op has distributed implements, find all valid dist attr of this op
impls = dist_op_impl_container.get_impls()
for idx, impl in enumerate(impls):
if impl.is_auto_compatible(dist_op):
if PlanFilter.check_dims_mapping_for_op(
op, dist_op.dist_attr, vars):
dist_op.dist_attr.impl_idx = idx
op_valid_dist_attrs.append(dist_op.dist_attr)

# set default dist attr for some special ops whose distributed attributes can not be enumerated
if not op_valid_dist_attrs:
op_dist_attr = OperatorDistributedAttribute()
op_dist_attr.process_mesh = process_mesh
dist_op = DistributedOperator(op, op_dist_attr)
for var_name in op.input_arg_names:
op_dist_attr.set_input_dims_mapping(
vars[var_name], [-1 for i in vars[var_name].shape])
for var_name in op.output_arg_names:
op_dist_attr.set_output_dims_mapping(
vars[var_name], [-1 for i in vars[var_name].shape])
dist_op.dist_attr.impl_idx = -1
op_valid_dist_attrs.append(dist_op.dist_attr)

return op_valid_dist_attrs

@staticmethod
def enum_valid_dist_attr_for_program(program,
process_mesh_topology,
is_pipeline=False):
"""Enumerate valid distributed attributes for all ops in program."""
valid_dist_attr_dict = OrderedDict()
ops = program.global_block().ops
vars = program.global_block().vars

processes = reduce(lambda x, y: x * y, process_mesh_topology)
global_group = [i for i in range(processes)]
global_process_mesh = None
pipeline_process_meshes = None

# in the pipeline mode, there are some process meshes
if is_pipeline:
pipeline_stages = process_mesh_topology[-1]
op_count_per_stage = len(ops) // pipeline_stages
if len(process_mesh_topology) > 1:
process_mesh_shape = process_mesh_topology[:-1]
per_process_mesh_group = processes // pipeline_stages
pipeline_process_meshes = [auto.ProcessMesh(mesh=np.array(global_group[i*per_process_mesh_group: \
(i+1)*per_process_mesh_group]).reshape(process_mesh_shape).tolist()) for i in range(pipeline_stages)]
elif len(process_mesh_topology) == 1:
pipeline_process_meshes = [
auto.ProcessMesh(mesh=[i]) for i in range(pipeline_stages)
]
else:
if len(process_mesh_topology) > 1:
global_process_mesh = auto.ProcessMesh(mesh=np.array(
global_group).reshape(process_mesh_topology).tolist())
else:
global_process_mesh = auto.ProcessMesh(mesh=global_group)

# enumerate valid distributed attribute for each op in the program
for idx, op in enumerate(ops):
op_valid_dist_attrs = None
op_process_mesh = global_process_mesh
pipeline_stage = -1
if pipeline_process_meshes is not None:
pipeline_stage = idx // op_count_per_stage if idx // op_count_per_stage < len(
pipeline_process_meshes) else idx // op_count_per_stage - 1
if pipeline_stage >= len(pipeline_process_meshes):
pipeline_stage = len(pipeline_process_meshes) - 1
op_process_mesh = pipeline_process_meshes[pipeline_stage]

if op.type in PlanSpace.not_enum_ops:
op_dist_attr = OperatorDistributedAttribute()
op_dist_attr.process_mesh = op_process_mesh
for var_name in op.input_arg_names:
if var_name in PlanSpace.special_vars:
op_dist_attr.set_input_dims_mapping(var_name, [])
else:
dims_mapping = [-1 for i in vars[var_name].shape]
op_dist_attr.set_input_dims_mapping(var_name,
dims_mapping)

for var_name in op.output_arg_names:
if var_name in PlanSpace.special_vars:
op_dist_attr.set_output_dims_mapping(var_name, [])
else:
dims_mapping = [-1 for i in vars[var_name].shape]
op_dist_attr.set_output_dims_mapping(var_name,
dims_mapping)
op_valid_dist_attrs = [op_dist_attr]
pipeline_stage = 0 if pipeline_stage != -1 else pipeline_stage
else:
op_valid_dist_attrs = PlanSpace._enum_valid_dist_attr_for_op(
program, op, op_process_mesh)

assert op_valid_dist_attrs is not None, "Enumerate {} valid distributed attribute failed.".format(
op)
valid_dist_attr_dict[op.desc.id(
)] = [op_valid_dist_attrs, pipeline_stage]

return valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh
Loading

0 comments on commit d038063

Please sign in to comment.