Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

A proposal for notebook tools #45

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions bootstrap/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def init_logs_options_files(exp_dir, resume=None):
Logger(exp_dir, name=logs_name)


def run(path_opts=None):
def run(path_opts=None, train_engine=True, eval_engine=True):
# first call to Options() load the options yaml file from --path_opts command line argument if path_opts=None
Options(path_opts)

Expand Down Expand Up @@ -106,14 +106,14 @@ def run(path_opts=None):

# if no training split, evaluate the model on the evaluation split
# (example: $ python main.py --dataset.train_split --dataset.eval_split test)
if not Options()['dataset']['train_split']:
if eval_engine and not Options()['dataset']['train_split']:
engine.eval()

# optimize the model on the training split for several epochs
# (example: $ python main.py --dataset.train_split train)
# if evaluation split, evaluate the model after each epochs
# (example: $ python main.py --dataset.train_split train --dataset.eval_split val)
if Options()['dataset']['train_split']:
if train_engine and Options()['dataset']['train_split']:
engine.train()

if hasattr(engine.view, 'current_thread') and engine.view.current_thread.is_alive():
Expand All @@ -123,6 +123,7 @@ def run(path_opts=None):
finally:
# write profiling results, if enabled
process_profiler(profiler)
return engine


def activate_debugger():
Expand Down
67 changes: 67 additions & 0 deletions bootstrap/tools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import os
import sys
import torch
from bootstrap.lib.logger import Logger
from bootstrap.lib.options import Options
from bootstrap.run import run


def reset_instance():
Options._Options__instance = None
Options.__instance = None
Logger._Loger_instance = None
Logger.perf_memory = {}
sys.argv = [sys.argv[0]] # reset command line args


def get_engine(
path_experiment, weights="best_eval_epoch.accuracy_top1", logs_name="tools",
):
reset_instance()
path_yaml = os.path.join(path_experiment, "options.yaml")
opt = Options(path_yaml)
if weights is not None:
opt["exp.resume"] = weights
opt["exp.dir"] = path_experiment
opt["misc.logs_name"] = logs_name
engine = run(train_engine=False, eval_engine=False)
return engine


def item_to_batch(engine, split, item, prepare_batch=True):
batch = engine.dataset[split].collate_fn([item])
if prepare_batch:
batch = engine.model.prepare_batch(batch)
return batch


def apply_item(engine, item, split="eval"):
# item = engine.dataset[split][idx]
engine.model.eval()
batch = item_to_batch(engine, split, item)
with torch.no_grad():
out = engine.model.network(batch)
return out


def load_model_state(engine, path):
"""
engine: bootstran Engine
path: path to model weights
"""
model_state = torch.load(path)
engine.model.load_state_dict(model_state)


def load_epoch(
engine, epoch, exp_dir,
):
path = os.path.join(exp_dir, f"ckpt_epoch_{epoch}_model.pth.tar")
print(path)
load_model_state(engine, path)


def load_last(engine, exp_dir):
path = os.path.join(exp_dir, "ckpt_last_model.pth.tar")
load_model_state(engine, path)