本项目是论文《Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection》的Megengine实现。该论文的官方实现地址:https://github.com/implus/GFocalV2
依赖于CUDA10
conda create -n GFLv2 python=3.7
pip install -r requirements.txt
下载官方的权重gfocal_r50_fpn_1x.pth:https://drive.google.com/file/d/1wSE9-c7tcQwIDPC6Vm_yfOokdPfmYmy7/view?usp=sharing ,将下载后的文件置于./official_GFLV2/GFocalV2/路径下。
安装完环境后,直接运行python compare.py
。
compare.py
文件对官方实现和Megengine实现的推理结果进行了对比。
运行compare.py
时,会读取./data
中存放的图片进行推理。compare.py
中实现了Megengine框架和官方使用的Pytorch框架的推理,并判断两者推理结果的一致性。
在使用模型时,使用如下代码即可加载模型和权重:
import megengine.hub as hub
megengine_model = hub.load('CV51GO/GFLv2_Megengine','get_Megengine_GFLv2_model',pretrained=True)