Skip to content

Commit

Permalink
CLI scripts (#177)
Browse files Browse the repository at this point in the history
* Added __init__

* Added init

* add phase codes

* Move essential codes

* Added cli

* Added cli

* Added CLI

* Add hydra-zen dependency

* revert unnecessary change

* revert unnecessary change

* blacked

* Update src/mri/cli/dc_adjoint.py

Co-authored-by: Pierre-Antoine Comby <[email protected]>

* Update src/mri/cli/dc_adjoint.py

Co-authored-by: Pierre-Antoine Comby <[email protected]>

* WIP

* Move tests config args to CI

* Update specs

* Add coil compresor

* Added codes

* Added nib

* Update the configs

* A bunch of updates

* Finallizing

* Added

* Added final codes

* Added hydra_scripts

* Added

* Added some commands

* Updated project.toml file

* Added io

* A

* Fix CLI

* Added CLI

* Searcher added

* Searcher added

* Updated

* Submit

* Update

* ii

* WIP

* Minor fix

* Fix outdir path

* Added support for gpu_monit

* Update to support multi-slice and multi-contrast

* Change defult to scale 4

* Added final codes

* Remove slice based saving, we dont need to do that

* Working codes

* axis=0

* Commited

* Added exit seq

* Added nii formatting

---------

Co-authored-by: Pierre-Antoine Comby <[email protected]>
Co-authored-by: chaithyagr <[email protected]>
  • Loading branch information
3 people authored Jun 27, 2024
1 parent fd04b23 commit ffe8e1a
Show file tree
Hide file tree
Showing 14 changed files with 502 additions and 28 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/ci-build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,8 +61,8 @@ jobs:
shell: bash -l {0}
run: |
which python
pytest
pytest -n 3 --verbose -cov=mri --cov-config=.coveragerc --ignore-glob='*test_local*.py' --cov-report=term --cov-report=xml --junitxml=pytest.xml --maxfail=2
- name: Save Test Results
if: always()
uses: actions/upload-artifact@v2
Expand Down
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
*.o
*.so
*.pyc
_version.py

# Logs and temporaries #
########################
Expand Down
21 changes: 8 additions & 13 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ dependencies = [
"joblib>=1.0.0",
"modopt>=1.7.1",
"numpy>=1.16.0",
"mri-nufft>=0.4.0",
"mri-nufft>=0.8.0",
"progressbar2>=3.34.3",
"scikit-image>=0.17.0",
"scikit-learn>=0.19.1",
Expand All @@ -27,6 +27,11 @@ requires-python = ">=3.10"
[project.optional-dependencies]
test=['pytest>=5.0.1', 'pytest-cov>=2.7.1', 'pytest-pep8', 'pytest-runner', "pytest-xdist", "pytest-sugar"]
gpu=["cupy", "cufinufft", "gpunufft"]
scripts=["hydra-zen", "pymrt", "nibabel", "hydra-callbacks"]

[project.scripts]
recon = "mri.cli.reconstruct:run_recon"
dc_adjoint = "mri.cli.reconstruct:run_adjoint"

[project.urls]
Homepage = "https://github.com/CEA-COSMIC/pysap-mri"
Expand All @@ -40,19 +45,9 @@ version_scheme = "python-simplified-semver"
local_scheme="no-local-version"
fallback_version="v99-dev"


[tool.pytest.ini_options]
addopts = ["-n 3",
"--verbose",
"--cov=mri",
"--cov-config=.coveragerc",
"--ignore-glob='*test_local*.py'",
"--cov-report=term",
"--cov-report=xml",
"--junitxml=pytest.xml",
"--maxfail=2",
]
testpaths = ["tests"]
minversion = "6.0"
testpaths=["tests"]

[tool.pylsp-mypy]
enabled = false
Expand Down
Empty file added src/mri/cli/__init__.py
Empty file.
274 changes: 274 additions & 0 deletions src/mri/cli/reconstruct.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
from hydra_zen import store, zen

from mri.io.output import save_data
from mri.cli.utils import raw_config, traj_config, setup_hydra_config, get_outdir_path
from mri.operators.fourier.utils import discard_frequency_outliers
from mrinufft.io.utils import add_phase_to_kspace_with_shifts
from pymrt.recipes.coils import compress_svd
from mri.reconstructors import SelfCalibrationReconstructor

import numpy as np
import pickle as pkl
import logging, os, glob
from functools import partial

log = logging.getLogger(__name__)

save_data_hydra = lambda x, *args, **kwargs: save_data(get_outdir_path(x), *args, **kwargs)


def dc_adjoint(obs_file: str, traj_file: str, coil_compress: str|int, debug: int,
obs_reader, traj_reader, fourier, output_filename: str = "dc_adjoint.pkl"):
"""
Reconstructs an image using the adjoint operator.
Parameters
----------
obs_file : str
Path to the observed kspace data file.
traj_file : str
Path to the trajectory file or the folder holding trajectory file.
If folder is provided, the trajectory name is picked up and the data header
and the trajectory is obtained by searching recursively.
obs_reader : callable
A function that reads the observed data file and returns
the raw data and data header.
traj_reader : callable
A function that reads the trajectory file and returns the trajectory
data and parameters.
fourier: Callable
A Callable returning a Fourier Operator
coil_compress : str|int, optional default -1
The number of singular values to keep in the coil compression.
If -1, coil compression is not applied
output_filename: str, optional default 'dc_adjoint.pkl'
The output file name with the right extension.
It can be:
1) *.pkl / *.mat: Holds the reconstructed results saved in dictionary as `recon`.
2) *.nii : NIFTI file holding the reconstructed images.
Returns
-------
None
The reconstructed image is saved as 'dc_adjoint.pkl' file.
"""
raw_data, data_header = obs_reader(obs_file)
log.info(f"Data Header: {data_header}")
try:
if not os.path.isdir(traj_file) and data_header["trajectory_name"] != os.path.basename(traj_file):
log.warn("Trajectory file does not match the trajectory in the data file")
except KeyError:
log.warn("Trajectory name not found in data header, Skipped Validation")
if os.path.isdir(traj_file):
search_folder = traj_file
found_trajs = glob.glob(os.path.join(search_folder, "**", data_header['trajectory_name']), recursive=True)
if len(found_trajs) == 0:
log.error(f"Trajectory {traj_file} from data_header not found in {search_folder}")
exit(1)
if len(found_trajs) > 1:
log.warn("More than one file found, choosing first one")
traj_file = found_trajs[0]
elif not os.path.exists(traj_file):
log.error("Trajectory not found! exiting")
exit(1)
log.debug(f"Loading trajectory from {traj_file}")
shots, traj_params = traj_reader(
traj_file,
dwell_time=traj_reader.keywords['raster_time'] / data_header["oversampling_factor"],
)
# Need to have image sizes as even to ensure no issues
traj_params['img_size'] = np.asarray([
size + 1 if size % 2 else size
for size in traj_params['img_size']
])
log.info(f"Trajectory Parameters: {traj_params}")
kspace_loc = shots.reshape(-1, traj_params["dimension"])
data_header["shifts"] = data_header['shifts'][:traj_params["dimension"]]
normalized_shifts = (
np.array(data_header["shifts"])
/ np.array(traj_params["FOV"])
* np.array(traj_params["img_size"])
/ 1000
)
if kspace_loc.max() > 0.5 or kspace_loc.min() < 0.5:
log.warn(f"K-space locations are above the unity range, discarding the outlier data")
kspace_loc, kspace_data = discard_frequency_outliers(kspace_loc, np.squeeze(raw_data))
kspace_data = kspace_data.astype(np.complex64)
kspace_loc = kspace_loc.astype(np.float32)
log.info(f"Phase shifting raw data for Normalized shifts: {normalized_shifts}")
kspace_data = add_phase_to_kspace_with_shifts(
kspace_data, kspace_loc, normalized_shifts
)
if coil_compress != -1:
kspace_data = np.ascontiguousarray(compress_svd(
kspace_data,
k_svd=coil_compress,
coil_axis=0
))
fourier.keywords['smaps'] = partial(
fourier.keywords['smaps'],
kspace_data=kspace_data,
)
fourier_op = fourier(
kspace_loc,
traj_params["img_size"],
n_coils=data_header["n_coils"] if coil_compress == -1 else coil_compress,
)
if debug > 0:
intermediate = {
'density_comp': fourier_op.impl.density,
'smaps': fourier_op.impl.smaps,
'traj_params': traj_params,
'data_header': data_header,
}
if coil_compress != -1:
intermediate['kspace_data'] = kspace_data
log.info("Saving Smaps and denisty_comp as intermediates")
pkl.dump(intermediate, open(get_outdir_path('intermediate.pkl'), 'wb'))
log.info("Getting the DC Adjoint")
dc_adjoint = fourier_op.adj_op(kspace_data)
if not fourier_op.impl.uses_sense:
dc_adjoint = np.linalg.norm(dc_adjoint, axis=0)
log.info("Saving DC Adjoint")
data_header['traj_params'] = traj_params
save_data_hydra(output_filename, dc_adjoint, data_header)
return dc_adjoint, (fourier_op, kspace_data, traj_params, data_header)



def recon(obs_file: str, traj_file: str, mu: float, num_iterations: int, coil_compress: str|int,
algorithm: str, debug: int, obs_reader, traj_reader, fourier, linear, sparsity,
output_filename: str = "recon.pkl"):
"""Reconstructs an MRI image using the given parameters.
Parameters
----------
obs_file : str
Path to the file containing the observed k-space data.
traj_file : str
Path to the file containing the trajectory data.
mu : float
Regularization parameter for the sparsity constraint.
num_iterations : int
Number of iterations for the reconstruction algorithm.
coil_compress : str | int
Method or factor for coil compression.
algorithm : str
Optimization algorithm to use for reconstruction.
debug : int
Debug level for printing debug information.
obs_reader : callable
Object for reading the observed k-space data.
traj_reader : callable
Object for reading the trajectory data.
fourier : callable
Object representing the Fourier operator.
linear : callable
Object representing the linear operator.
sparsity : callable
Object representing the sparsity operator.
output_filename : str, optional
Path to save the reconstructed image, by default "recon.pkl"
"""
recon_adjoint, additional_data = dc_adjoint(
obs_file,
traj_file,
coil_compress,
debug,
obs_reader,
traj_reader,
fourier,
output_filename='dc_adjoint' + output_filename[-4:],
)
fourier_op, kspace_data, traj_params, data_header = additional_data
linear_op = linear(shape=tuple(traj_params["img_size"]), dim=traj_params['dimension'])
linear_op.op(recon_adjoint)
sparse_op = sparsity(coeffs_shape=linear_op.coeffs_shape, weights=mu)
log.info("Setting up reconstructor")
reconstructor = SelfCalibrationReconstructor(
fourier_op=fourier_op,
linear_op=linear_op,
regularizer_op=sparse_op,
verbose=1,
lipschitz_cst=fourier_op.impl.get_lipschitz_cst(),
)
log.info("Starting reconstruction")
recon, costs, metrics = reconstructor.reconstruct(
kspace_data=kspace_data,
optimization_alg=algorithm,
x_init=recon_adjoint, # gain back the first step by initializing with DC Adjoint
num_iterations=num_iterations,
)
data_header['costs'] = costs
data_header['metrics'] = metrics
log.info("Saving reconstruction results")
save_data_hydra(output_filename, recon, data_header)

setup_hydra_config()
store(
dc_adjoint,
obs_reader=raw_config,
traj_reader=traj_config,
coil_compress=10,
debug=1,
hydra_defaults=[
"_self_",
{"fourier": "gpu"},
{"fourier/density_comp": "pipe"},
{"fourier/smaps": "low_frequency"},
],
name="dc_adjoint",
)
store(
recon,
obs_reader=raw_config,
traj_reader=traj_config,
algorithm="pogm",
num_iterations=30,
coil_compress=10,
debug=1,
hydra_defaults=[
"_self_",
{"fourier": "gpu"},
{"fourier/density_comp": "pipe"},
{"fourier/smaps": "low_frequency"},
{"linear": "gpu"},
{"sparsity": "weighted_sparse"},
],
name="recon",
)

store(
recon,
obs_reader=raw_config,
traj_reader=traj_config,
algorithm="pogm",
num_iterations=30,
coil_compress=5,
debug=1,
hydra_defaults=[
"_self_",
{"fourier": "gpu_lowmem"},
{"fourier/density_comp": "pipe_lowmem"},
{"fourier/smaps": "low_frequency"},
],
name="recon_lowmem",
)

# Setup the Hydra Config and callbacks.
store.add_to_hydra_store()


def run_recon():
zen(recon).hydra_main(
config_name="recon",
config_path=None,
version_base="1.3",
)

def run_adjoint():
zen(dc_adjoint).hydra_main(
config_name="dc_adjoint",
config_path=None,
version_base="1.3",
)
Loading

0 comments on commit ffe8e1a

Please sign in to comment.