Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add rand safe version of Poisson and Negative binomial distributions #418

Merged
merged 17 commits into from
Aug 15, 2024

Conversation

SamuelBrand1
Copy link
Collaborator

This PR contributes a possible solution to #415 by creating distributions that work with Distributions but don't trigger a InexactError when rand is called on them with a large mean value (noting that a large mean value can triggered by random walks on the log-mean). These distributions are:

  • SafePoisson
  • SafeNegativeBinomial

Largely this was boilerplate (if we do more of this we should consider a macro to avoid this), with the difference that I replace floor(Int, x) calls with a helper function that determines whether floor(BigInt, x) should be used rather than throwing an InexactError.

Notable features/limitations

  • The poly algo I use for sampling Poissons is from PoissonRandom after checking that its still faster than Distribution.Poisson sampling.
  • For SafeNegativeBinomial I'm using the parameterisation with mean $\mu$ and variance relationship:
$$\text{var} = \mu + \alpha^2 \mu^2.$$

My reasoning here is in the doc string; I think this is the easiest parameterisation to reason on priors because $\alpha \approx \text{std} / \text{mean}$ when the mean is larger than $1/ \alpha$. This differs from NegativeBinomialMeanClust so I'm happy to change.

  • I've added AD libraries ReverseDiff and ForwardDiff to the test env. This was because we need to be sure that we can backprop through logpdf calls with SafePoisson or SafeNegativeBinomial distribution structs. I've added unit tests here with very large mean values to check validity in extreme parameter regimes.
  • I think rand calls are slower to these distributions (but not done large formal analysis).
  • If we want to add these distributions then it suggests a number of issues to replace and remove NegativeBinomialMeanClust.

I know @damonbayer has been interested in Neg bin safety too.

@SamuelBrand1 SamuelBrand1 requested a review from seabbs August 14, 2024 00:03
Copy link
Contributor

Try this Pull Request!

Open Julia and type:

import Pkg
Pkg.activate(temp=true)
Pkg.add(url="https://github.com/CDCgov/Rt-without-renewal", rev="safe-discrete-dists", subdir="EpiAware")
using EpiAware

@SamuelBrand1 SamuelBrand1 changed the base branch from main to remove-nan-handling August 14, 2024 00:10
@codecov-commenter
Copy link

codecov-commenter commented Aug 14, 2024

Codecov Report

Attention: Patch coverage is 71.60494% with 46 lines in your changes missing coverage. Please review.

Project coverage is 88.67%. Comparing base (6b7ac06) to head (00dee99).

Files Patch % Lines
EpiAware/src/EpiAwareUtils/SafePoisson.jl 79.33% 25 Missing ⚠️
EpiAware/src/EpiAwareUtils/SafeNegativeBinomial.jl 43.24% 21 Missing ⚠️
Additional details and impacted files
@@                   Coverage Diff                   @@
##           remove-nan-handling     #418      +/-   ##
=======================================================
- Coverage                93.71%   88.67%   -5.05%     
=======================================================
  Files                       54       56       +2     
  Lines                      557      715     +158     
=======================================================
+ Hits                       522      634     +112     
- Misses                      35       81      +46     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 14 Aug 2024 - 00:33
    • Baseline: 14 Aug 2024 - 00:57
  • Package commits:
    • Target: 17ea27
    • Baseline: bc99b2
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.87 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.87 (5%) ✅ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.01 (5%) 0.94 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.98 (5%) 0.94 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.01 (5%) 0.93 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.01 (5%) 0.93 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.87 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.89 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.99 (5%) 0.94 (1%) ✅
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.00 (5%) 0.93 (1%) ✅
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.00 (5%) 0.98 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.97 (5%) 0.97 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.04 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.02 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       5627 s          0 s        608 s      13505 s          0 s
       #2  3226 MHz       4896 s          0 s        529 s      14285 s          0 s
       #3  3218 MHz       5893 s          0 s        537 s      13266 s          0 s
       #4  3242 MHz       6742 s          0 s        642 s      12308 s          0 s
  Memory: 15.606491088867188 GB (13309.55859375 MB free)
  Uptime: 1996.67 sec
  Load Avg:  1.0  1.01  1.07
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3242 MHz       9658 s          0 s       1036 s      23052 s          0 s
       #2  2445 MHz       9123 s          0 s        937 s      23660 s          0 s
       #3  2445 MHz       8454 s          0 s        857 s      24389 s          0 s
       #4  2572 MHz       8992 s          0 s        924 s      23781 s          0 s
  Memory: 15.606491088867188 GB (13360.8125 MB free)
  Uptime: 3399.75 sec
  Load Avg:  1.01  1.01  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 0:33
  • Package commit: 17ea27
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.088 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 303.000 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 314.193 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 445.934 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 442.899 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.377 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.407 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 593.570 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 591.893 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 211.974 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 212.718 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 307.024 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 306.931 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.297 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.257 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 578.246 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 579.016 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.051 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.622 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.505 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.952 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 106.449 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.490 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.162 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.619 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.533 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.288 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.949 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.680 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.898 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.984 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.960 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.678 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 64.801 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 59.802 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 133.159 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 124.603 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 194.604 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 148.768 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.482 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.200 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.271 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.127 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 12.814 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.390 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.788 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 51.967 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.068 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.882 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.827 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.383 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.678 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.389 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 63.128 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.670 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.554 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.462 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 428.744 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 367.995 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.339 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 938.400 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.439 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.411 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.248 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.058 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 248.233 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 247.407 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 351.028 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 346.657 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.298 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.215 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 475.837 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 472.515 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.823 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.667 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.521 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.298 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.586 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.956 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.237 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.057 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 887.867 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 771.017 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.865 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.675 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.509 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.687 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.589 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.364 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 582.663 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 481.617 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 793.180 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 661.981 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.499 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.361 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.168 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 976.174 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 311.119 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 311.838 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 407.760 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 407.365 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.457 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.494 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 553.188 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 543.397 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.030 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.668 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.745 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.458 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.965 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.488 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.078 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.893 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.203 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.678 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.908 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.265 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 84.979 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 48.210 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.357 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.682 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.406 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.380 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.162 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.053 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.643 μs (5%) 39.20 KiB (1%) 915
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.833 μs (5%) 33.98 KiB (1%) 806
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.794 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.574 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 18.345 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 18.214 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.230 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.581 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 295.282 μs (5%) 295.12 KiB (1%) 6901
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 271.117 μs (5%) 289.91 KiB (1%) 6792
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.264 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 51.225 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.165 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.140 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.560 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.570 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.646 μs (5%) 36.48 KiB (1%) 909
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.058 μs (5%) 31.27 KiB (1%) 800
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.656 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.589 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.565 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.224 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.206 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.593 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 142.056 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 25.738 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.356 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.221 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.714 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.678 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.860 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.824 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.003 μs (5%) 12.92 KiB (1%) 284
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.563 μs (5%) 7.70 KiB (1%) 175
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.252 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.052 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.159 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.126 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.780 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.697 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 61.104 μs (5%) 49.39 KiB (1%) 1030
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.528 μs (5%) 44.17 KiB (1%) 921
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.280 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.119 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.440 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.091 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.589 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.260 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.282 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 63.610 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.707 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.422 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.548 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.027 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.164 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.624 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.194 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.715 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.311 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.036 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 444.667 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 411.020 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 584.115 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 537.642 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.446 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.630 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.970 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.667 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.813 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.652 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.688 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.518 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.266 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.524 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.291 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.019 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       5627 s          0 s        608 s      13505 s          0 s
       #2  3226 MHz       4896 s          0 s        529 s      14285 s          0 s
       #3  3218 MHz       5893 s          0 s        537 s      13266 s          0 s
       #4  3242 MHz       6742 s          0 s        642 s      12308 s          0 s
  Memory: 15.606491088867188 GB (13309.55859375 MB free)
  Uptime: 1996.67 sec
  Load Avg:  1.0  1.01  1.07
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 0:57
  • Package commit: bc99b2
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.092 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 300.332 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 305.668 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 436.040 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 437.095 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.197 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.268 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 568.674 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 571.234 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 229.498 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 219.440 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 309.498 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 309.121 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.147 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.257 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 571.451 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 574.283 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.104 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.661 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.499 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.953 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.538 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.298 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.192 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.699 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.571 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.331 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.059 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.756 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.115 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.173 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.110 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.846 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 64.210 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 60.613 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 133.470 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 126.707 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 188.293 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 144.922 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.763 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.351 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.912 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.956 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.464 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.460 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 72.766 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 51.537 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.188 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.029 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.899 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.363 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.095 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.658 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.180 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.760 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.765 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.584 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 433.879 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 361.880 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.311 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 881.615 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.527 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.010 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.226 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.002 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 259.161 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 249.466 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 360.250 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 358.433 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.178 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.252 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 479.469 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 472.668 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.855 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.686 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.807 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.334 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.754 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.475 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.227 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.014 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 916.341 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 791.308 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.857 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.641 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.525 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.726 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.751 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.488 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 599.944 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 482.128 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 791.845 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 693.182 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.398 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.760 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.115 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 935.733 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 311.826 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 309.940 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 413.775 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 420.839 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.514 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.473 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 555.452 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 552.914 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.253 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.696 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.792 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.441 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.718 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.366 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.315 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.019 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.221 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.714 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.904 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.606 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 83.276 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.307 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.310 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.653 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.409 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.365 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.297 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.178 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.392 μs (5%) 41.55 KiB (1%) 965
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.434 μs (5%) 36.33 KiB (1%) 856
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.808 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.637 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 18.795 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 18.745 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.722 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 23.013 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 293.739 μs (5%) 317.86 KiB (1%) 7386
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 269.375 μs (5%) 312.64 KiB (1%) 7277
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 52.147 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 54.091 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.218 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.203 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.788 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.759 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.227 μs (5%) 38.83 KiB (1%) 959
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.168 μs (5%) 33.61 KiB (1%) 850
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.798 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.677 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.557 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.230 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.287 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.583 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 139.952 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.335 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.241 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.321 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.692 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.673 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.879 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.835 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.003 μs (5%) 13.16 KiB (1%) 289
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.790 μs (5%) 7.94 KiB (1%) 180
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.325 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.067 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.041 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.988 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.022 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.945 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.741 μs (5%) 51.73 KiB (1%) 1080
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.896 μs (5%) 46.52 KiB (1%) 971
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.540 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.472 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.481 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.307 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.742 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.315 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 78.196 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 61.786 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.741 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.519 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.548 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.046 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.222 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.650 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.024 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.385 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.282 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.027 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 448.212 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 411.920 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 597.233 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 550.707 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.526 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.750 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.942 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.661 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.803 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.657 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.709 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.537 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.614 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.652 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.290 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.038 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3242 MHz       9658 s          0 s       1036 s      23052 s          0 s
       #2  2445 MHz       9123 s          0 s        937 s      23660 s          0 s
       #3  2445 MHz       8454 s          0 s        857 s      24389 s          0 s
       #4  2572 MHz       8992 s          0 s        924 s      23781 s          0 s
  Memory: 15.606491088867188 GB (13360.8125 MB free)
  Uptime: 3399.75 sec
  Load Avg:  1.01  1.01  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.85
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@SamuelBrand1
Copy link
Collaborator Author

Note that this is branched from remove-nan-handling and therefore has same documenter CI problem which derives from removing the safety handling of NegativeBinomialMeanClust.

We can either address that with a new issue, or use that as an opportunity to test using the new dists?

Copy link
Collaborator

@seabbs seabbs left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this looks good and I think we should replace our usage everywhere with this (so that i.e Documenter passes). I also think we should push ideas about reducing copy and paste here into a issue but definitely think it should be investigated as it should help with our partial pooling problems

@seabbs
Copy link
Collaborator

seabbs commented Aug 14, 2024

This needs a benchmark before we merge it.

@SamuelBrand1
Copy link
Collaborator Author

This needs a benchmark before we merge it.

If we call SafeNegativeBinomial from NegativeMeanClust that should be a benchmark test automatically?

@SamuelBrand1
Copy link
Collaborator Author

I got irritated by a stochastic CI failure on how different the sample variance is from sampling from SafeNegativeBinomial vs NegativeBinomial so I made it more principled test based on the std of the variance estimator.

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 14 Aug 2024 - 13:32
    • Baseline: 14 Aug 2024 - 13:56
  • Package commits:
    • Target: 04b166
    • Baseline: bc99b2
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.49 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.08 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "Intercept", "evaluation", "linked"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "evaluation", "standard"] 0.92 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.21 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.08 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.99 (5%) 0.94 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.00 (5%) 0.93 (1%) ✅
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.00 (5%) 0.92 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.01 (5%) 0.92 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.05 (5%) ❌ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.00 (5%) 0.94 (1%) ✅
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.99 (5%) 0.93 (1%) ✅
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.88 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.01 (5%) 0.98 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.01 (5%) 0.97 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.07 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.99 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 2.23 (5%) ❌ 1.41 (1%) ❌
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.05 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       5268 s          0 s        524 s      13014 s          0 s
       #2  3243 MHz       4725 s          0 s        526 s      13561 s          0 s
       #3  3170 MHz       7200 s          0 s        651 s      10950 s          0 s
       #4  2602 MHz       6919 s          0 s        688 s      11212 s          0 s
  Memory: 15.606491088867188 GB (13541.16015625 MB free)
  Uptime: 1886.98 sec
  Load Avg:  1.1  1.06  1.08
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3243 MHz       9480 s          0 s        948 s      22821 s          0 s
       #2  2445 MHz       8439 s          0 s        938 s      23876 s          0 s
       #3  2445 MHz       9832 s          0 s        969 s      22442 s          0 s
       #4  3050 MHz       9854 s          0 s        999 s      22409 s          0 s
  Memory: 15.606491088867188 GB (13085.8515625 MB free)
  Uptime: 3333.87 sec
  Load Avg:  1.02  1.02  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 13:32
  • Package commit: 04b166
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.082 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 302.704 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 306.218 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 429.899 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 431.206 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.308 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.428 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 567.853 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 562.027 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 213.571 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 213.209 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 309.699 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 307.714 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.287 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.247 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 566.843 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 555.583 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.038 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.652 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.442 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.996 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 107.521 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.841 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.233 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.650 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.538 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.271 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.096 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.728 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.028 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.524 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.999 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.719 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 61.946 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 57.397 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 128.059 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 120.936 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 193.542 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 147.535 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.903 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.440 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.923 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.997 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.496 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.279 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 76.343 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.079 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.193 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.974 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.887 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.389 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.026 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.639 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.522 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.700 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.843 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.628 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 429.693 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 368.305 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.527 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 902.938 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.599 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.550 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.288 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.082 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 246.940 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 246.807 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 351.954 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 353.526 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.255 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.198 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 477.270 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 474.714 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.859 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.700 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.027 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.397 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.697 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.916 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.282 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.073 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 887.150 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 781.385 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.853 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.685 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.307 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.696 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.708 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.420 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 599.857 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 499.102 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 821.985 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 684.222 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.559 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.699 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.181 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 990.562 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 309.000 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 309.460 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 410.520 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 406.910 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.579 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.613 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 538.683 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 536.847 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.152 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.618 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.810 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.472 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.351 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.056 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.125 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.995 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.170 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.640 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.885 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.701 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 84.949 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 47.068 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.463 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.712 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.353 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.304 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.262 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.186 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.465 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.857 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.928 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.741 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.731 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.721 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.461 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.691 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 306.874 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 287.648 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 53.179 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 53.680 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.150 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.129 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.857 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.715 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.467 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.940 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.031 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.874 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.557 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.224 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.221 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.547 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 139.150 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.896 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.544 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.473 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.716 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.668 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.855 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.835 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.043 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.926 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.304 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.055 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.148 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.138 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.992 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.975 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.231 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.950 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.837 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.384 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.454 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.186 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.794 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.285 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.132 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 64.160 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.090 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.774 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.570 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.039 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.200 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.642 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.776 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.866 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.334 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.008 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 446.187 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 412.025 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 581.302 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 532.047 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 25.037 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.931 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.949 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.691 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.860 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.685 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.721 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.525 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.914 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.174 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.300 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.073 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2445 MHz       5268 s          0 s        524 s      13014 s          0 s
       #2  3243 MHz       4725 s          0 s        526 s      13561 s          0 s
       #3  3170 MHz       7200 s          0 s        651 s      10950 s          0 s
       #4  2602 MHz       6919 s          0 s        688 s      11212 s          0 s
  Memory: 15.606491088867188 GB (13541.16015625 MB free)
  Uptime: 1886.98 sec
  Load Avg:  1.1  1.06  1.08
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 13:56
  • Package commit: bc99b2
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.091 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 310.831 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 314.402 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 452.919 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 455.904 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.467 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.498 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 591.106 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 597.978 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 222.472 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 218.767 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 323.838 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 323.695 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.569 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.548 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 603.531 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 595.864 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.037 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.620 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.506 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.953 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.518 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 70.923 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.723 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.170 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.540 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.325 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.113 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.735 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.643 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.844 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.045 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.757 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 59.772 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 57.107 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 126.737 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 119.123 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 187.340 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 145.152 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.464 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.711 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.952 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.047 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.855 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.239 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 71.193 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.999 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.348 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.106 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.931 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.371 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.949 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.692 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.624 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.963 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.969 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.793 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 434.025 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 368.614 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.025 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 839.429 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.448 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.221 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.256 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.059 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 268.677 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 268.972 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 369.548 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 368.476 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.370 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.248 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 468.173 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 468.582 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.839 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.682 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.494 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.379 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.016 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.836 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.256 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.066 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 895.829 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 794.336 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.859 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.674 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.856 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.046 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.718 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.484 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 586.569 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 487.490 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 813.412 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 662.846 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.368 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.100 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.183 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 983.900 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 306.598 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 307.321 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 408.315 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 408.765 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.568 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.594 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 528.267 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 531.783 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.989 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.677 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.695 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.324 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 57.958 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.296 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.153 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.896 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.165 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.672 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.946 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.583 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 83.246 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 48.611 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.499 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.790 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.446 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.414 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.351 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.212 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.826 μs (5%) 41.55 KiB (1%) 965
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.776 μs (5%) 36.33 KiB (1%) 856
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.893 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.609 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 17.613 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 17.573 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.422 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.891 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 306.013 μs (5%) 317.86 KiB (1%) 7386
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 286.166 μs (5%) 312.64 KiB (1%) 7277
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 51.015 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.895 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.212 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.192 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.843 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.737 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.617 μs (5%) 38.83 KiB (1%) 959
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.271 μs (5%) 33.61 KiB (1%) 850
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.766 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.620 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.564 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.227 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.277 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.535 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 140.343 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 25.358 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.411 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.282 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.707 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.679 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.883 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.835 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.712 μs (5%) 13.16 KiB (1%) 289
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.810 μs (5%) 7.94 KiB (1%) 180
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.216 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.080 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.146 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.101 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.175 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.058 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.963 μs (5%) 51.73 KiB (1%) 1080
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 19.226 μs (5%) 31.20 KiB (1%) 700
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.502 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.306 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.440 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.278 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.609 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.402 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 79.359 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 63.058 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.719 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.499 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.560 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.035 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.173 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.658 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.585 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 14.176 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.311 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.030 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 448.818 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 413.425 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 586.319 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 538.426 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.395 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.589 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.947 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.670 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.851 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.706 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.726 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.547 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.346 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.933 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.304 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.091 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3243 MHz       9480 s          0 s        948 s      22821 s          0 s
       #2  2445 MHz       8439 s          0 s        938 s      23876 s          0 s
       #3  2445 MHz       9832 s          0 s        969 s      22442 s          0 s
       #4  3050 MHz       9854 s          0 s        999 s      22409 s          0 s
  Memory: 15.606491088867188 GB (13085.8515625 MB free)
  Uptime: 3333.87 sec
  Load Avg:  1.02  1.02  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.85
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 14 Aug 2024 - 14:52
    • Baseline: 14 Aug 2024 - 15:16
  • Package commits:
    • Target: 83cbc7
    • Baseline: bc99b2
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.70 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.35 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.86 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.15 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.05 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.20 (5%) ❌ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.04 (5%) 0.94 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.04 (5%) 0.93 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.01 (5%) 0.92 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.02 (5%) 0.92 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.25 (5%) ❌ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.04 (5%) 0.94 (1%) ✅
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.02 (5%) 0.93 (1%) ✅
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.87 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.00 (5%) 0.98 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.04 (5%) 0.97 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.04 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.02 (5%) 0.95 (1%) ✅
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 1.08 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.07 (5%) ❌ 1.00 (1%)
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.06 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3242 MHz       5021 s          0 s        512 s      14582 s          0 s
       #2  2445 MHz       4883 s          0 s        459 s      14776 s          0 s
       #3  3198 MHz       6736 s          0 s        697 s      12684 s          0 s
       #4  2711 MHz       6431 s          0 s        677 s      13017 s          0 s
  Memory: 15.606491088867188 GB (13262.97265625 MB free)
  Uptime: 2018.12 sec
  Load Avg:  1.02  1.04  1.06
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3158 MHz       8738 s          0 s        859 s      24555 s          0 s
       #2  2445 MHz       8271 s          0 s        844 s      25038 s          0 s
       #3  3253 MHz      10592 s          0 s       1071 s      22494 s          0 s
       #4  3243 MHz       8612 s          0 s        980 s      24570 s          0 s
  Memory: 15.606491088867188 GB (13296.76953125 MB free)
  Uptime: 3424.43 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 14:52
  • Package commit: 83cbc7
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.083 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 299.671 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 304.430 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 440.874 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 432.571 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.347 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.358 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 567.546 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 566.860 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 211.908 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 213.287 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 318.975 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 306.510 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.367 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.357 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 561.257 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 554.080 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.071 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.637 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.471 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.874 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 106.698 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.610 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.273 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.700 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.587 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.285 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.921 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.681 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.876 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.593 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.006 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.744 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 63.118 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 59.040 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 131.235 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 123.701 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 193.742 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 147.936 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.123 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.811 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.321 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.857 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 14.016 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.189 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.928 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 53.259 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.173 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.964 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.945 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.380 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.821 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.616 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.061 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.291 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.793 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.636 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 429.593 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 362.095 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.600 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 879.600 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.331 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.350 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.262 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.073 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 266.641 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 266.257 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 367.287 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 373.401 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.255 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.242 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 467.714 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 463.299 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.892 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.711 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.438 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.286 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.228 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.006 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.283 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.074 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 881.432 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 786.058 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.783 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.657 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.859 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.397 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.605 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.408 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 585.865 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 490.303 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 805.013 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 678.232 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.710 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.950 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.180 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 983.062 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 309.940 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 308.124 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 430.452 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 428.839 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.574 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.591 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 561.640 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 544.952 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.323 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.658 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.661 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.472 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.412 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.589 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.256 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.889 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.183 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.729 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.905 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.667 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 85.199 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 48.320 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.380 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.775 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.435 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.384 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.295 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.212 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.925 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.136 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.822 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.651 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.931 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.951 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.401 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.690 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 298.687 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 278.099 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 52.177 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 65.562 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.160 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.142 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.857 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.739 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.665 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.848 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.794 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.577 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.552 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.225 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.200 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.521 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 141.463 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.376 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.320 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.206 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.690 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.656 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.896 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.865 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.452 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.830 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.331 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.073 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.171 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.098 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.038 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.978 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.412 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.520 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.448 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.254 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.443 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.335 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.844 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.445 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.001 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 63.208 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.717 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.472 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.582 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.041 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.210 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.635 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.335 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.685 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.433 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.119 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 444.162 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 416.425 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 582.022 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 533.842 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.526 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.690 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.067 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.781 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.851 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.696 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.716 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.510 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.514 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.304 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.442 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.136 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3242 MHz       5021 s          0 s        512 s      14582 s          0 s
       #2  2445 MHz       4883 s          0 s        459 s      14776 s          0 s
       #3  3198 MHz       6736 s          0 s        697 s      12684 s          0 s
       #4  2711 MHz       6431 s          0 s        677 s      13017 s          0 s
  Memory: 15.606491088867188 GB (13262.97265625 MB free)
  Uptime: 2018.12 sec
  Load Avg:  1.02  1.04  1.06
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 15:16
  • Package commit: bc99b2
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.082 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 296.547 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 300.723 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 443.101 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 442.583 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.318 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.208 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 550.340 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 548.090 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 209.500 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 218.886 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 313.640 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 312.972 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.157 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.247 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 558.677 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 551.771 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.068 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.643 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.572 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.026 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 104.925 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.587 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.332 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.719 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.541 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.294 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.988 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.693 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.164 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.693 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.998 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.726 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 64.270 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 58.129 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 133.108 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 122.589 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 186.217 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 143.057 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.923 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.280 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 11.381 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 8.847 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 19.887 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 9.978 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.808 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 51.967 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.103 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.928 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.865 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.387 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.033 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.620 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.531 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.509 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.877 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.464 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 422.040 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 357.303 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.185 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 906.700 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.107 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.590 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.236 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.053 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 258.141 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 258.315 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 355.991 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 356.467 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.242 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.184 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 461.518 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 456.487 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.829 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.667 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.836 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.269 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.553 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.154 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.251 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.055 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 913.816 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 776.838 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.883 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.706 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.304 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.636 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.639 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.396 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 581.083 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 484.287 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 778.532 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 666.680 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.367 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.900 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.151 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 950.864 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 315.523 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 315.754 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 408.610 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 400.348 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.520 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.527 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 533.058 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 539.463 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.022 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.671 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.830 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.445 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.158 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.395 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.028 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.833 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.176 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.682 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.875 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.229 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.872 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.988 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.377 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.680 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.428 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.400 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.225 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.225 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.081 μs (5%) 41.55 KiB (1%) 965
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 33.893 μs (5%) 36.33 KiB (1%) 856
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.736 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.579 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 17.813 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 17.633 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.181 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.991 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 294.780 μs (5%) 317.86 KiB (1%) 7386
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 273.842 μs (5%) 312.64 KiB (1%) 7277
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 54.903 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 52.257 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.219 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.197 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.893 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.753 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.872 μs (5%) 38.83 KiB (1%) 959
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.196 μs (5%) 33.61 KiB (1%) 850
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.712 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.622 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.563 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.230 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.235 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.531 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 138.277 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.814 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.227 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.334 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.696 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.665 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.846 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.792 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.402 μs (5%) 13.16 KiB (1%) 289
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.513 μs (5%) 7.94 KiB (1%) 180
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.321 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.086 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.056 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.063 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.968 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.922 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 58.288 μs (5%) 51.73 KiB (1%) 1080
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.807 μs (5%) 46.52 KiB (1%) 971
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.286 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.170 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.302 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.000 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.796 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.340 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 78.186 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 61.514 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.752 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.502 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.544 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.027 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.242 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.656 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 28.563 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.725 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.292 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.022 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 445.172 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 413.420 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 574.623 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 531.942 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.574 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.459 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.943 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.669 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.867 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.690 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.681 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.519 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.733 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.853 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.305 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.076 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3158 MHz       8738 s          0 s        859 s      24555 s          0 s
       #2  2445 MHz       8271 s          0 s        844 s      25038 s          0 s
       #3  3253 MHz      10592 s          0 s       1071 s      22494 s          0 s
       #4  3243 MHz       8612 s          0 s        980 s      24570 s          0 s
  Memory: 15.606491088867188 GB (13296.76953125 MB free)
  Uptime: 3424.43 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.86
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@SamuelBrand1
Copy link
Collaborator Author

Documenter CI works now.

To recap:

  • SafeNegativeBinomial and SafePoisson resolve a problem with floor inside rand calls when the sampler mean is very large.
  • Setting check_args = false as a kwarg for Distribution object construction switches off checking that causes occasion fails. The NUTS sampler seems to be smart enough to handle resultant logpdf values.

@SamuelBrand1 SamuelBrand1 requested a review from seabbs August 14, 2024 17:22
Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 14 Aug 2024 - 17:07
    • Baseline: 14 Aug 2024 - 17:31
  • Package commits:
    • Target: 47725b
    • Baseline: bc99b2
  • Julia commits:
    • Target: 48d4fd
    • Baseline: 48d4fd
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.05 (5%) ❌ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.06 (5%) ❌ 1.00 (1%)
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "AR", "evaluation", "standard"] 1.07 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.15 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.15 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 0.84 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.88 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.82 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.91 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.16 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.97 (5%) 0.94 (1%) ✅
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.99 (5%) 0.93 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.98 (5%) 0.92 (1%) ✅
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.02 (5%) 0.92 (1%) ✅
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 1.00 (5%) 0.94 (1%) ✅
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.01 (5%) 0.93 (1%) ✅
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.09 (5%) ❌ 1.00 (1%)
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.97 (5%) 0.98 (1%) ✅
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.98 (5%) 0.97 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.99 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 1.00 (5%) 0.95 (1%) ✅
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.93 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.35 (5%) ❌ 1.00 (1%)
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.94 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2598 MHz       6321 s          0 s        582 s      12530 s          0 s
       #2  2445 MHz       7084 s          0 s        589 s      11753 s          0 s
       #3  2445 MHz       5183 s          0 s        569 s      13684 s          0 s
       #4  3243 MHz       4943 s          0 s        618 s      13872 s          0 s
  Memory: 15.606487274169922 GB (13328.83984375 MB free)
  Uptime: 1948.72 sec
  Load Avg:  1.0  1.0  1.04
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3017 MHz       9548 s          0 s        957 s      23397 s          0 s
       #2  2671 MHz      10010 s          0 s        934 s      22954 s          0 s
       #3  2445 MHz       9008 s          0 s        967 s      23936 s          0 s
       #4  3242 MHz       8512 s          0 s        981 s      24412 s          0 s
  Memory: 15.606487274169922 GB (13207.16796875 MB free)
  Uptime: 3398.52 sec
  Load Avg:  1.07  1.02  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 17:7
  • Package commit: 47725b
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.091 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 301.252 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 305.278 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 462.898 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 457.677 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.288 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.057 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 550.819 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 555.321 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 211.552 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 211.451 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 323.163 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 322.195 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.137 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.057 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 558.160 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 559.230 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.143 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.738 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.443 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.013 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 106.059 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.779 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.343 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.769 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.786 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.518 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.976 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.716 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.566 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.924 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.007 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.744 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 64.411 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 60.994 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 132.909 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 125.785 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 193.773 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 148.608 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.933 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.310 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 10.790 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.067 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 13.145 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.530 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 71.985 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.679 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.140 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.036 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.743 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.385 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.081 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.629 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.371 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 42.710 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.670 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.668 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 427.538 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 358.330 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.635 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 854.263 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.906 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.590 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.251 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.073 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 250.731 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 248.673 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 356.327 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 355.241 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.281 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.340 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 467.274 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 470.066 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.885 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.688 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.443 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.358 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 44.554 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.895 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.230 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.055 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 897.892 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 762.504 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.695 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.687 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.568 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.126 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.664 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.363 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 591.619 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 476.636 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 815.675 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 683.987 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.468 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.350 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.161 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 973.421 ns (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 310.743 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 308.490 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 414.025 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 416.685 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.606 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.530 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 546.239 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 543.144 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.043 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.707 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.900 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.391 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 59.892 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 41.197 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.277 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.004 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.223 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.682 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.914 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.092 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 82.014 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.177 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.440 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.634 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.377 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.339 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.235 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.194 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.604 μs (5%) 39.05 KiB (1%) 905
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.416 μs (5%) 33.83 KiB (1%) 796
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.853 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.692 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 16.711 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 16.731 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.081 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.541 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 303.068 μs (5%) 293.61 KiB (1%) 6804
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 292.488 μs (5%) 288.39 KiB (1%) 6695
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 53.110 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 51.126 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.145 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.122 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.851 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.714 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.766 μs (5%) 36.33 KiB (1%) 899
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.000 μs (5%) 31.11 KiB (1%) 790
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.772 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.612 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.566 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.241 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.379 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.605 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 137.758 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.977 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 7.244 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.212 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.698 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.665 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.895 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.845 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 22.553 μs (5%) 12.91 KiB (1%) 283
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.773 μs (5%) 7.69 KiB (1%) 174
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.329 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.075 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.048 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.033 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.109 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.978 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 61.335 μs (5%) 49.23 KiB (1%) 1020
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.622 μs (5%) 44.02 KiB (1%) 911
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.312 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.158 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.448 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.337 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.804 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.156 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 79.489 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.457 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.642 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.529 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.572 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.043 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.138 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.649 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.556 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.895 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.280 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.046 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 450.081 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 415.825 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 593.626 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 546.370 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.035 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.539 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.951 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.681 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.833 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.704 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.701 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.542 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.214 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.204 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.318 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.032 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  2598 MHz       6321 s          0 s        582 s      12530 s          0 s
       #2  2445 MHz       7084 s          0 s        589 s      11753 s          0 s
       #3  2445 MHz       5183 s          0 s        569 s      13684 s          0 s
       #4  3243 MHz       4943 s          0 s        618 s      13872 s          0 s
  Memory: 15.606487274169922 GB (13328.83984375 MB free)
  Uptime: 1948.72 sec
  Load Avg:  1.0  1.0  1.04
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 14 Aug 2024 - 17:31
  • Package commit: bc99b2
  • Julia commit: 48d4fd
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 1.091 μs (5%) 352 bytes (1%) 4
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 320.203 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 326.245 ns (5%) 432 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 444.823 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 444.520 ns (5%) 784 bytes (1%) 13
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.287 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.177 μs (5%) 5.62 KiB (1%) 115
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 578.823 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 583.903 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 212.323 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 211.791 ns (5%) 256 bytes (1%) 4
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 307.723 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 305.294 ns (5%) 512 bytes (1%) 9
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 9.278 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.217 μs (5%) 5.64 KiB (1%) 114
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 588.994 ns (5%) 272 bytes (1%) 6
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 582.302 ns (5%) 272 bytes (1%) 6
["EpiLatentModels", "AR", "evaluation", "linked"] 2.071 μs (5%) 3.84 KiB (1%) 45
["EpiLatentModels", "AR", "evaluation", "standard"] 1.628 μs (5%) 2.80 KiB (1%) 38
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.518 μs (5%) 11.69 KiB (1%) 55
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.944 μs (5%) 10.12 KiB (1%) 46
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 110.447 μs (5%) 55.31 KiB (1%) 1113
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.859 μs (5%) 40.64 KiB (1%) 818
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.653 μs (5%) 8.44 KiB (1%) 225
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.491 μs (5%) 7.31 KiB (1%) 207
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.559 μs (5%) 3.05 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 1.319 μs (5%) 2.17 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.076 μs (5%) 5.16 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.748 μs (5%) 4.28 KiB (1%) 37
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.780 μs (5%) 24.41 KiB (1%) 447
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.012 μs (5%) 16.86 KiB (1%) 333
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.108 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.809 μs (5%) 1.00 KiB (1%) 27
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 66.876 μs (5%) 52.27 KiB (1%) 580
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 60.694 μs (5%) 37.69 KiB (1%) 536
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 134.613 μs (5%) 119.19 KiB (1%) 1184
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 126.698 μs (5%) 89.31 KiB (1%) 1092
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 196.738 μs (5%) 107.81 KiB (1%) 1710
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 150.993 μs (5%) 79.61 KiB (1%) 1378
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.214 μs (5%) 8.58 KiB (1%) 226
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.712 μs (5%) 7.45 KiB (1%) 208
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 12.854 μs (5%) 30.39 KiB (1%) 214
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 9.107 μs (5%) 21.95 KiB (1%) 184
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 14.137 μs (5%) 34.09 KiB (1%) 224
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 10.199 μs (5%) 25.66 KiB (1%) 194
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 76.994 μs (5%) 56.38 KiB (1%) 719
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 54.482 μs (5%) 42.72 KiB (1%) 580
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.355 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.048 μs (5%) 2.19 KiB (1%) 52
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 1.847 μs (5%) 4.17 KiB (1%) 37
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 1.417 μs (5%) 2.48 KiB (1%) 31
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.171 μs (5%) 12.62 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.703 μs (5%) 10.94 KiB (1%) 39
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 62.798 μs (5%) 38.81 KiB (1%) 748
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.281 μs (5%) 31.91 KiB (1%) 633
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.819 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.642 μs (5%) 2.22 KiB (1%) 51
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 436.241 ns (5%) 1.00 KiB (1%) 8
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 367.005 ns (5%) 864 bytes (1%) 7
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.543 μs (5%) 5.28 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 971.789 ns (5%) 5.12 KiB (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.928 μs (5%) 19.83 KiB (1%) 376
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.670 μs (5%) 14.45 KiB (1%) 266
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.341 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.129 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "Intercept", "evaluation", "linked"] 251.780 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "evaluation", "standard"] 251.799 ns (5%) 336 bytes (1%) 5
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 346.837 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 345.765 ns (5%) 640 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.235 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.277 μs (5%) 3.53 KiB (1%) 76
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 470.730 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 473.750 ns (5%) 240 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.897 μs (5%) 3.47 KiB (1%) 30
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.727 μs (5%) 3.00 KiB (1%) 27
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.968 μs (5%) 7.75 KiB (1%) 36
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.324 μs (5%) 7.28 KiB (1%) 33
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.247 μs (5%) 22.16 KiB (1%) 397
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.345 μs (5%) 16.47 KiB (1%) 285
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.321 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.139 μs (5%) 656 bytes (1%) 11
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 919.067 ns (5%) 1.86 KiB (1%) 18
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 803.896 ns (5%) 1.42 KiB (1%) 16
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.857 μs (5%) 8.73 KiB (1%) 25
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.710 μs (5%) 8.30 KiB (1%) 23
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.208 μs (5%) 26.19 KiB (1%) 487
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 29.846 μs (5%) 20.53 KiB (1%) 376
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.722 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.462 μs (5%) 1.31 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 597.733 ns (5%) 1.19 KiB (1%) 12
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 487.138 ns (5%) 896 bytes (1%) 10
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 811.184 ns (5%) 1.72 KiB (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 677.636 ns (5%) 1.41 KiB (1%) 16
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 41.949 μs (5%) 19.08 KiB (1%) 380
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 26.490 μs (5%) 13.55 KiB (1%) 269
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.236 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.064 μs (5%) 400 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 318.751 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 317.585 ns (5%) 384 bytes (1%) 6
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 407.060 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 405.565 ns (5%) 704 bytes (1%) 11
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 4.584 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 4.624 μs (5%) 3.84 KiB (1%) 81
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 536.190 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 542.505 ns (5%) 192 bytes (1%) 3
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 2.108 μs (5%) 4.16 KiB (1%) 44
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.718 μs (5%) 2.84 KiB (1%) 38
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.956 μs (5%) 10.00 KiB (1%) 51
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.539 μs (5%) 8.69 KiB (1%) 45
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 61.816 μs (5%) 35.58 KiB (1%) 689
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 39.684 μs (5%) 29.05 KiB (1%) 574
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.068 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.952 μs (5%) 1.22 KiB (1%) 27
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 2.239 μs (5%) 4.52 KiB (1%) 47
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 1.722 μs (5%) 2.62 KiB (1%) 37
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.019 μs (5%) 7.69 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.668 μs (5%) 5.53 KiB (1%) 45
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 84.639 μs (5%) 41.95 KiB (1%) 771
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 47.840 μs (5%) 28.44 KiB (1%) 513
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.737 μs (5%) 1.81 KiB (1%) 49
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.883 μs (5%) 1.69 KiB (1%) 47
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.421 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.373 μs (5%) 3.42 KiB (1%) 49
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.414 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.278 μs (5%) 3.77 KiB (1%) 56
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 52.188 μs (5%) 41.55 KiB (1%) 965
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 35.757 μs (5%) 36.33 KiB (1%) 856
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.836 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.679 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 17.523 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 17.473 μs (5%) 22.14 KiB (1%) 206
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 22.853 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.831 μs (5%) 22.36 KiB (1%) 211
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 309.340 μs (5%) 317.86 KiB (1%) 7386
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 286.297 μs (5%) 312.64 KiB (1%) 7277
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 51.677 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 52.750 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.212 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.198 μs (5%) 336 bytes (1%) 5
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.867 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.765 μs (5%) 560 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.736 μs (5%) 38.83 KiB (1%) 959
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.640 μs (5%) 33.61 KiB (1%) 850
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.893 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.684 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.585 μs (5%) 1.80 KiB (1%) 22
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.256 μs (5%) 1.38 KiB (1%) 18
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.315 μs (5%) 7.75 KiB (1%) 31
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.636 μs (5%) 4.52 KiB (1%) 25
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 137.788 μs (5%) 91.00 KiB (1%) 1913
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.857 μs (5%) 29.25 KiB (1%) 712
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.624 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.450 μs (5%) 176 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.745 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.710 μs (5%) 1.44 KiB (1%) 26
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.911 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.881 μs (5%) 1.66 KiB (1%) 31
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 23.133 μs (5%) 13.16 KiB (1%) 289
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 8.907 μs (5%) 7.94 KiB (1%) 180
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.349 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.111 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 7.196 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 7.166 μs (5%) 5.48 KiB (1%) 93
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.092 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.032 μs (5%) 5.83 KiB (1%) 100
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 62.027 μs (5%) 51.73 KiB (1%) 1080
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 43.442 μs (5%) 46.52 KiB (1%) 971
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.606 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.417 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.476 μs (5%) 8.88 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 4.238 μs (5%) 7.62 KiB (1%) 67
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.913 μs (5%) 15.88 KiB (1%) 83
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.442 μs (5%) 14.62 KiB (1%) 75
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 81.432 μs (5%) 60.41 KiB (1%) 1139
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.677 μs (5%) 53.94 KiB (1%) 1022
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.898 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.604 μs (5%) 544 bytes (1%) 11
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.583 μs (5%) 2.97 KiB (1%) 31
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 1.041 μs (5%) 1.41 KiB (1%) 21
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.175 μs (5%) 4.03 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.641 μs (5%) 2.47 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 29.005 μs (5%) 24.73 KiB (1%) 490
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.676 μs (5%) 17.28 KiB (1%) 352
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.406 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.123 μs (5%) 144 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 449.778 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 414.825 ns (5%) 288 bytes (1%) 5
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 577.967 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 531.153 ns (5%) 512 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 24.126 μs (5%) 18.72 KiB (1%) 414
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.520 μs (5%) 12.83 KiB (1%) 286
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.058 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.738 μs (5%) 96 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 1.861 μs (5%) 2.05 KiB (1%) 27
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 1.673 μs (5%) 1.73 KiB (1%) 25
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.706 μs (5%) 2.22 KiB (1%) 26
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.516 μs (5%) 1.91 KiB (1%) 24
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.953 μs (5%) 23.89 KiB (1%) 499
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.404 μs (5%) 17.69 KiB (1%) 369
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.456 μs (5%) 112 bytes (1%) 2
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.102 μs (5%) 112 bytes (1%) 2

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.10.4
Commit 48d4fd48430 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1  3017 MHz       9548 s          0 s        957 s      23397 s          0 s
       #2  2671 MHz      10010 s          0 s        934 s      22954 s          0 s
       #3  2445 MHz       9008 s          0 s        967 s      23936 s          0 s
       #4  3242 MHz       8512 s          0 s        981 s      24412 s          0 s
  Memory: 15.606487274169922 GB (13207.16796875 MB free)
  Uptime: 3398.52 sec
  Load Avg:  1.07  1.02  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.86
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

p = μ / (μ + ex_σ²)
r = μ² / ex_σ²
return NegativeBinomial(r, p)
σ² = μ + α * μ²
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lol woopps

Copy link
Collaborator

@seabbs seabbs left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice looks good. As we discussed its a lot of copy and paste so ideally we should have an issue to track changes we can make to reduce this (either here or upstream).

@seabbs seabbs merged commit eda1a90 into remove-nan-handling Aug 15, 2024
11 checks passed
@seabbs seabbs deleted the safe-discrete-dists branch August 15, 2024 12:23
github-merge-queue bot pushed a commit that referenced this pull request Aug 15, 2024
* remove nan handling

* get rid of all NB padding and clamping

* remove nan handling

* get rid of all NB padding and clamping

* remove overflow test

* Add `rand` safe version of Poisson and Negative binomial distributions (#418)

* SafePoisson with safety for large means

* better selection for conversion to Int or BigInt

* add SafeNegativeBinomial

* add unit tests to doctests

* reformat

* Add type promotion so AD works with distribution constructor

* Add logpdf grad call unit tests for Safe discrete dists

* reformat

* change neg bin param to (r, p)

* Update utils.jl

* reformat

* change empirical var test to more principled approach

* add default nadapts rather than just 50% of target sampling

* Update NUTSampler.jl

* set dist check_args = false

* Set nadapts to Turing Default

* reformat

---------

Co-authored-by: Samuel Brand <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants