-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
5 changed files
with
185 additions
and
192 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
# pylint: disable=invalid-name, missing-function-docstring, broad-exception-caught | ||
|
||
""" | ||
Some sanity tests to ensure chunkedgraph was created properly. | ||
""" | ||
|
||
from datetime import datetime | ||
import numpy as np | ||
|
||
from pychunkedgraph.graph import ChunkedGraph | ||
from pychunkedgraph.graph import attributes | ||
|
||
|
||
def family(cg: ChunkedGraph): | ||
np.random.seed(42) | ||
n_chunks = 100 | ||
n_segments_per_chunk = 200 | ||
timestamp = datetime.utcnow() | ||
|
||
node_ids = [] | ||
for layer in range(2, cg.meta.layer_count - 1): | ||
for _ in range(n_chunks): | ||
c_x = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][0]) | ||
c_y = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][1]) | ||
c_z = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][2]) | ||
chunk_id = cg.get_chunk_id(layer=layer, x=c_x, y=c_y, z=c_z) | ||
max_segment_id = cg.get_segment_id(cg.id_client.get_max_node_id(chunk_id)) | ||
if max_segment_id < 10: | ||
continue | ||
|
||
segment_ids = np.random.randint(1, max_segment_id, n_segments_per_chunk) | ||
for segment_id in segment_ids: | ||
node_ids.append( | ||
cg.get_node_id(np.uint64(segment_id), np.uint64(chunk_id)) | ||
) | ||
|
||
rows = cg.client.read_nodes( | ||
node_ids=node_ids, end_time=timestamp, properties=attributes.Hierarchy.Parent | ||
) | ||
valid_node_ids = [] | ||
non_valid_node_ids = [] | ||
for k in rows.keys(): | ||
if len(rows[k]) > 0: | ||
valid_node_ids.append(k) | ||
else: | ||
non_valid_node_ids.append(k) | ||
|
||
parents = cg.get_parents(valid_node_ids, time_stamp=timestamp) | ||
children_dict = cg.get_children(parents) | ||
for child, parent in zip(valid_node_ids, parents): | ||
assert child in children_dict[parent] | ||
print("success") | ||
|
||
|
||
def existence(cg: ChunkedGraph): | ||
np.random.seed(42) | ||
layer = 2 | ||
n_chunks = 100 | ||
n_segments_per_chunk = 200 | ||
timestamp = datetime.utcnow() | ||
node_ids = [] | ||
for _ in range(n_chunks): | ||
c_x = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][0]) | ||
c_y = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][1]) | ||
c_z = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][2]) | ||
chunk_id = cg.get_chunk_id(layer=layer, x=c_x, y=c_y, z=c_z) | ||
max_segment_id = cg.get_segment_id(cg.id_client.get_max_node_id(chunk_id)) | ||
if max_segment_id < 10: | ||
continue | ||
|
||
segment_ids = np.random.randint(1, max_segment_id, n_segments_per_chunk) | ||
for segment_id in segment_ids: | ||
node_ids.append(cg.get_node_id(np.uint64(segment_id), np.uint64(chunk_id))) | ||
|
||
rows = cg.client.read_nodes( | ||
node_ids=node_ids, end_time=timestamp, properties=attributes.Hierarchy.Parent | ||
) | ||
valid_node_ids = [] | ||
non_valid_node_ids = [] | ||
for k in rows.keys(): | ||
if len(rows[k]) > 0: | ||
valid_node_ids.append(k) | ||
else: | ||
non_valid_node_ids.append(k) | ||
|
||
roots = [] | ||
try: | ||
roots = cg.get_roots(valid_node_ids) | ||
assert len(roots) == len(valid_node_ids) | ||
print("success") | ||
except Exception as e: | ||
print(f"Something went wrong: {e}") | ||
print("At least one node failed. Checking nodes one by one:") | ||
|
||
if len(roots) != len(valid_node_ids): | ||
log_dict = {} | ||
success_dict = {} | ||
for node_id in valid_node_ids: | ||
try: | ||
_ = cg.get_root(node_id, time_stamp=timestamp) | ||
print(f"Success: {node_id} from chunk {cg.get_chunk_id(node_id)}") | ||
success_dict[node_id] = True | ||
except Exception as e: | ||
print(f"{node_id} - chunk {cg.get_chunk_id(node_id)} failed: {e}") | ||
success_dict[node_id] = False | ||
t_id = node_id | ||
while t_id is not None: | ||
last_working_chunk = cg.get_chunk_id(t_id) | ||
t_id = cg.get_parent(t_id) | ||
|
||
layer = cg.get_chunk_layer(last_working_chunk) | ||
print(f"Failed on layer {layer} in chunk {last_working_chunk}") | ||
log_dict[node_id] = last_working_chunk | ||
|
||
|
||
def cross_edges(cg: ChunkedGraph): | ||
np.random.seed(42) | ||
layer = 2 | ||
n_chunks = 10 | ||
n_segments_per_chunk = 200 | ||
timestamp = datetime.utcnow() | ||
node_ids = [] | ||
for _ in range(n_chunks): | ||
c_x = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][0]) | ||
c_y = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][1]) | ||
c_z = np.random.randint(0, cg.meta.layer_chunk_bounds[layer][2]) | ||
chunk_id = cg.get_chunk_id(layer=layer, x=c_x, y=c_y, z=c_z) | ||
max_segment_id = cg.get_segment_id(cg.id_client.get_max_node_id(chunk_id)) | ||
if max_segment_id < 10: | ||
continue | ||
|
||
segment_ids = np.random.randint(1, max_segment_id, n_segments_per_chunk) | ||
for segment_id in segment_ids: | ||
node_ids.append(cg.get_node_id(np.uint64(segment_id), np.uint64(chunk_id))) | ||
|
||
rows = cg.client.read_nodes( | ||
node_ids=node_ids, end_time=timestamp, properties=attributes.Hierarchy.Parent | ||
) | ||
valid_node_ids = [] | ||
non_valid_node_ids = [] | ||
for k in rows.keys(): | ||
if len(rows[k]) > 0: | ||
valid_node_ids.append(k) | ||
else: | ||
non_valid_node_ids.append(k) | ||
|
||
cc_edges = cg.get_atomic_cross_edges(valid_node_ids) | ||
cc_ids = np.unique( | ||
np.concatenate( | ||
[ | ||
np.concatenate(list(v.values())) | ||
for v in list(cc_edges.values()) | ||
if len(v.values()) | ||
] | ||
) | ||
) | ||
|
||
roots = cg.get_roots(cc_ids) | ||
root_dict = dict(zip(cc_ids, roots)) | ||
root_dict_vec = np.vectorize(root_dict.get) | ||
|
||
for k in cc_edges: | ||
if len(cc_edges[k]) == 0: | ||
continue | ||
local_ids = np.unique(np.concatenate(list(cc_edges[k].values()))) | ||
assert len(np.unique(root_dict_vec(local_ids))) | ||
print("success") | ||
|
||
|
||
def run_all(cg: ChunkedGraph): | ||
print("Running family tests:") | ||
family(cg) | ||
|
||
print("\nRunning existence tests:") | ||
existence(cg) | ||
|
||
print("\nRunning cross_edges tests:") | ||
cross_edges(cg) |