Skip to content

[CVPR'23] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

License

Notifications You must be signed in to change notification settings

ByeongHyunPak/btc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2023] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

Byeonghyun Pak*, Jaewon Lee*, Kyong Hwan Jin
Daegu Gyeongbuk Institute of Science and Technology (DGIST)
CVPR 2023, Highlight

Environment

Requirements

  • Python 3
  • Pytorch 1.13.0
  • TensorboardX
  • pyyaml, numpy, tqdm, imageio

Checkpoint

  • Download a SCI1K pre-trained model: RDN-BTC

Datasets

  1. mkdir ../Data for putting the dataset folders.

  2. cd ../Data and download the datasets (SCI1K, SCID, and SIQAD) from this repo.

  3. For the additional benchmarks in Tab 6, follow Data instruction provided by this repo.

Demo

python demo.py --input [INPUT] --model [MODEL] --scale [SCALE] --output output.png --gpu [GPU]
  • [INPUT] : input image's path (e.g. --input input.png).
  • [MODEL] : to define the pre-trained model (e.g. --model rdn+btc-3rd.pth).
  • [SCALE] : arbitrary magnification (e.g. --scale 3 or --scale 6.4).
  • [GPU] : to specify the GPUS (e.g. --gpu 0).

Train

python train.py --config configs/train/[TRAIN_CONFIG] --gpu [GPU]
  • [TRAIN_CONFIG] : to define model configuration (e.g. train-rdn+btc-3rd.yaml).
  • [GPU] : to specify the GPUS (e.g. --gpu 0 or --gpu 0,1).

Train

python test.py --config configs/test/[TEST_CONFIG] --model save/[MODEL] --gpu [GPU]
  • [TEST_CONFIG] : to define test configuration (e.g. test-sci1k-02.yaml for SCI1K dataset on x2).
  • [MODEL] : to define the pre-trained model (e.g. rdn+btc-3rd/epoch_last.pth).
  • [GPU] : to specify the GPUS (e.g. --gpu 0 or --gpu 0,1).

Citation

If you find our code helpful, please cite our paper:

@inproceedings{pak2023b,
  title     = {B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution},
  author    = {Pak, Byeonghyun and Lee, Jaewon and Jin, Kyong Hwan},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages     = {10062--10071},
  year      = {2023}
}

Acknowledgements

This project is based on the following open-source projects. We thank the authors for sharing their codes.

About

[CVPR'23] B-spline Texture Coefficients Estimator for Screen Content Image Super-Resolution (Highlight)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published