An AutoML toolbox specialized in contrastive learning.
torch 1.8.0
gaiavision
mmcv-full 1.3.0
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tools/dist_train.sh apps/dynmoco/configs/local/ar50to101_10pc_bs64_200_epoch.py 8
This is the checkpoint we use in our paper.
For classification downstream tasks:
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_search.sh apps/dynmoco/configs/local/supernet_search.py /path/to_supernet_ckpt workdir 4
For dense prediction downstream tasks:
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_search.sh apps/dynmoco/configs/local/supernet_dense_search.py /path/to_supernet_ckpt workdir 4 --dense True
Change the R_specific in apps/dynmoco/configs/local/specific_extract.py according your need, then:
CUDA_VISIBLE_DEVICES=0 bash tools/dist_extract_from_supernet.sh /path/to_supernet_ckpt subnet.pth apps/dynmoco/configs/local/specific_extract.py 4
Extract backbone from this generated subnet pth:
python tools/extract_backbone_weights.py subnet.pth backbone.pth
If you find this project useful in your research, please consider cite:
@misc{chang2022data,
title={DATA: Domain-Aware and Task-Aware Pre-training},
author={Qing Chang and Junran Peng and Lingxie Xie and Jiajun Sun and Haoran Yin and Qi Tian and Zhaoxiang Zhang},
year={2022},
eprint={2203.09041},
archivePrefix={arXiv},
primaryClass={cs.CV}
}