Skip to content

BraveGroup/GAIA-ssl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GAIA-ssl

An AutoML toolbox specialized in contrastive learning.

Install

requirements:

torch 1.8.0

gaiavision

mmcv-full 1.3.0

Command

Supernet training

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tools/dist_train.sh apps/dynmoco/configs/local/ar50to101_10pc_bs64_200_epoch.py 8

This is the checkpoint we use in our paper.

Feature similarity computatoin

For classification downstream tasks:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_search.sh apps/dynmoco/configs/local/supernet_search.py /path/to_supernet_ckpt workdir 4

For dense prediction downstream tasks:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_search.sh apps/dynmoco/configs/local/supernet_dense_search.py /path/to_supernet_ckpt workdir 4 --dense True

Extract subnet

Change the R_specific in apps/dynmoco/configs/local/specific_extract.py according your need, then:

CUDA_VISIBLE_DEVICES=0 bash tools/dist_extract_from_supernet.sh /path/to_supernet_ckpt subnet.pth apps/dynmoco/configs/local/specific_extract.py 4

Extract backbone from this generated subnet pth:

python tools/extract_backbone_weights.py subnet.pth backbone.pth

Citation

If you find this project useful in your research, please consider cite:

@misc{chang2022data,
      title={DATA: Domain-Aware and Task-Aware Pre-training}, 
      author={Qing Chang and Junran Peng and Lingxie Xie and Jiajun Sun and Haoran Yin and Qi Tian and Zhaoxiang Zhang},
      year={2022},
      eprint={2203.09041},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Releases

No releases published

Packages

No packages published