Skip to content

Commit

Permalink
update: Added google badge to all notebooks issue #266 (#275)
Browse files Browse the repository at this point in the history
* fourth trt

* final file added

* update: added installation of pydna
  • Loading branch information
hiyama341 authored and manulera committed Oct 8, 2024
1 parent 09199a9 commit 2cd9d38
Show file tree
Hide file tree
Showing 9 changed files with 189 additions and 221 deletions.
42 changes: 23 additions & 19 deletions docs/notebooks/CRISPR.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,26 @@
"The `pydna.crispr` module contains the `cas9` class to simulate the biological activites of the Cas9 protein and the guideRNA, which should be imported. In addtion, the `Dseqrecord` class has also been imported to generate an example target_sequence."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/CRISPR.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand All @@ -34,15 +54,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[]\n"
]
}
],
"outputs": [],
"source": [
"# Defining the target sequence\n",
"sequence = Dseqrecord(\"GTTACTTTACCCGACGTCCCCGG\")\n",
Expand All @@ -56,15 +68,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"outputs": [],
"source": [
"# Initializing the Cas9 protein\n",
"enzyme = cas9(protospacer=gRNA_sequence[0])\n",
Expand Down Expand Up @@ -95,7 +99,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
"version": "3.11.9"
}
},
"nbformat": 4,
Expand Down
20 changes: 20 additions & 0 deletions docs/notebooks/Dseq.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,26 @@
"> Visit the full library documentation [here](https://bjornfjohansson.github.io/pydna/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Dseq.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
22 changes: 21 additions & 1 deletion docs/notebooks/Dseq_Features.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,26 @@
"pydna offers many ways to easily view, add, extract, and write features into a Genbank file via the `Dseqrecord` class. After reading a file into a `Dseqrecord` object, we can check out the list of features in the record using the following code. This example uses the sample record [U49845](https://www.ncbi.nlm.nih.gov/genbank/samplerecord/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Dseq_Features.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down Expand Up @@ -788,7 +808,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
"version": "3.11.9"
}
},
"nbformat": 4,
Expand Down
226 changes: 25 additions & 201 deletions docs/notebooks/Example_Gibson.ipynb
100644 → 100755

Large diffs are not rendered by default.

20 changes: 20 additions & 0 deletions docs/notebooks/Example_Restriction.ipynb
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,26 @@
"Source files can be found alongside this notebook, if you would like to follow along. Annotations are made alongside the code to describe key steps."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Example_Restriction.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
20 changes: 20 additions & 0 deletions docs/notebooks/Gibson.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,26 @@
" * `algorithm`: the function used to find homology regions between DNA fragments. For Gibson Assembly, we use the `terminal_overlap` function, which finds homology regions only at the terminal regions. By default, the `Assembly` class uses the `common_sub_strings` function to find homology regions, which finds homology anywhere, as it could happen in a homologous recombination event.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Gibson.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
20 changes: 20 additions & 0 deletions docs/notebooks/Importing_Seqs.ipynb
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,26 @@
"The following code shows an example of how to use the `parse` function to import a FASTA file."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Importing_Seqs.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
20 changes: 20 additions & 0 deletions docs/notebooks/PCR.ipynb
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,26 @@
"The following example uses a 300+ bp custom sample circular DNA, containing an example gene that we would like to clone. 18 bp forward and reverse primers have been provided. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/PCR.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
20 changes: 20 additions & 0 deletions docs/notebooks/Restrict_Ligate_Cloning.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,26 @@
"Restriction enzymes recognise specific DNA sequences and cut them, leaving sticky ends or blunt ends. To cut a sequence using `pydna`, we can use the `cut` method on a `Dseqrecord` object. Here is an example showing how to use the `cut` method to genenrate EcoRI restriction digests. The record includes a 338bp circular sequence, with an example gene feature."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a target=\"_blank\" href=\"https://colab.research.google.com/github/BjornFJohansson/pydna/blob/dev_bjorn/docs/notebooks/Restrict_Ligate_Cloning.ipynb\">\n",
" <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
"</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install pydna \n",
"%%capture\n",
"!pip install pydna"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down

0 comments on commit 2cd9d38

Please sign in to comment.