Skip to content

BestActionNow/CVAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CVAR

================================================

by XuZhao ([email protected])

Overview

PyTorch implementation of our paper "Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder" accepted by SIGIR 2022.

Dependencies

Install Pytorch 1.10.0, using pip or conda, should resolve all dependencies.

Tested with Python 3.8.5, but should work with 3.x as well.

Tested with sklearn 0.0.

Tested on CPU or GPU.

Dataset

You can download the datasets we introduced in our paper from following links:

Raw data need to be preprocessed before using. The data preprocessing scripts are given in datahub/movielens1M/movielens1M_preprocess.ipynb and datahub/taobaoAd/taobaoAD_preprocess.ipynb for movielens1M and taobaoAD respectively.

How to Use

model/*: Implementation of various backbone models.

model/warm.py: Implementation of three warm-up models.

main.py: Start Point of experiment.

You can conduct experiments as following command:

python main.py --dataset_name movielens1M --model_name deepfm --warmup_model cvar --cvar_iters 10

python main.py --dataset_name taobaoAD --model_name deepfm --warmup_model cvar --cvar_iters 1

Notice that the hyperparameter --cvar_iters is set 10 for movielens1M dataset while 1 for taobaoAD dataset.

Moreover, the command to get every data point in our paper is given in ./run.sh, including some hyperparameters and random seed setting. Default random seed is 1234.

The program will print the AUC, F1 in cold-start stage and three warm-up stages. Part of settable parameters are listed as follows:

Parameter Options Usage
--dataset_name Specify the dataset for evaluation
--dataset_path Specify the dataset path for evaluation
--model_name [fm, deepfm, wd, dcn, ipnn, opnn] Specify the backbone for recommendation
--warmup_model [base, mwuf, metaE, cvar_init, cvar] Specify the warm-up method
--is_dropoutnet [True, False] Specify whether to use dropoutNet for backbone pretraining
--device [cpu, cuda:0] Specify the device (CPU or GPU) to run the program
--runs Specify the number of executions to compute average metrics

Some other settable parameters could be found in the ./main.py file.

Citation

If you want to refer to our work, please cite our paper as:

@inproceedings{zhao2022improving,
  title={Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder},
  author={Xu Zhao and Yi Ren and Ying Du and Shenzheng Zhang and Nian Wang},
  booktitle={SIGIR},
  year={2022},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published