Skip to content

Commit

Permalink
Inference params support (mlflow#9068)
Browse files Browse the repository at this point in the history
Signed-off-by: Serena Ruan <[email protected]>
Signed-off-by: Serena Ruan <[email protected]>
Co-authored-by: Harutaka Kawamura <[email protected]>
  • Loading branch information
2 people authored and BenWilson2 committed Jul 31, 2023
1 parent 2dc8664 commit 589ca04
Show file tree
Hide file tree
Showing 64 changed files with 3,695 additions and 257 deletions.
2 changes: 2 additions & 0 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,6 +339,8 @@
("py:class", "mlflow.types.schema.ColSpec"),
("py:class", "mlflow.types.schema.TensorSpec"),
("py:class", "mlflow.types.schema.Schema"),
("py:class", "mlflow.types.schema.ParamSchema"),
("py:class", "mlflow.types.schema.ParamSpec"),
("py:class", "mlflow.models.model.Model"),
("py:class", "mlflow.models.signature.ModelSignature"),
("py:class", "MlflowInferableDataset"),
Expand Down
2 changes: 1 addition & 1 deletion docs/source/model-registry.rst
Original file line number Diff line number Diff line change
Expand Up @@ -564,7 +564,7 @@ save, log, register, and load from the Model Registry and score.
prediction_scores = self._analyser.polarity_scores(txt)
return prediction_scores
def predict(self, context, model_input):
def predict(self, context, model_input, params=None):
# Apply the preprocess function from the vader model to score
model_output = model_input.apply(lambda col: self._score(col))
return model_output
Expand Down
336 changes: 321 additions & 15 deletions docs/source/models.rst

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/source/plugins.rst
Original file line number Diff line number Diff line change
Expand Up @@ -311,7 +311,7 @@ To use Aliyun OSS as an artifact store, an OSS URI of the form ``oss://<bucket>/
class Mod(mlflow.pyfunc.PythonModel):
def predict(self, ctx, inp):
def predict(self, ctx, inp, params=None):
return 7
Expand Down
9 changes: 8 additions & 1 deletion examples/flower_classifier/image_pyfunc.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
import pip
import yaml
import tensorflow as tf
from typing import Any, Dict, Optional

import mlflow
from mlflow.utils import PYTHON_VERSION
Expand Down Expand Up @@ -54,13 +55,19 @@ def __init__(self, graph, session, model, image_dims, domain):
probs_names = ["p({})".format(x) for x in domain]
self._column_names = ["predicted_label", "predicted_label_id"] + probs_names

def predict(self, input):
def predict(
self, input, params: Optional[Dict[str, Any]] = None # pylint: disable=unused-argument
):
"""
Generate predictions for the data.
:param input: pandas.DataFrame with one column containing images to be scored. The image
column must contain base64 encoded binary content of the image files. The image
format must be supported by PIL (e.g. jpeg or png).
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: pandas.DataFrame containing predictions with the following schema:
Predicted class: string,
Expand Down
5 changes: 4 additions & 1 deletion examples/pyfunc/train.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
from typing import Any, Dict, Optional

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
Expand All @@ -14,7 +15,9 @@ class CustomPredict(mlflow.pyfunc.PythonModel):
def load_context(self, context):
self.model = mlflow.sklearn.load_model(context.artifacts["custom_model"])

def predict(self, context, model_input):
def predict(
self, context, model_input, params: Optional[Dict[str, Any]] = None
): # pylint: disable=unused-argument
prediction = self.model.predict(model_input)
return iris_classes(prediction)

Expand Down
5 changes: 4 additions & 1 deletion examples/sktime/flavor.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,7 @@
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from sktime.utils.multiindex import flatten_multiindex
from typing import Any, Dict, Optional

FLAVOR_NAME = "sktime"

Expand Down Expand Up @@ -468,7 +469,9 @@ class _SktimeModelWrapper:
def __init__(self, sktime_model):
self.sktime_model = sktime_model

def predict(self, dataframe) -> pd.DataFrame:
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
) -> pd.DataFrame: # pylint: disable=unused-argument
df_schema = dataframe.columns.values.tolist()

if len(dataframe) > 1:
Expand Down
8 changes: 6 additions & 2 deletions examples/transformers/simple.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,16 +10,18 @@

input_example = ["prompt 1", "prompt 2", "prompt 3"]

parameters = {"max_length": 512, "do_sample": True}

signature = mlflow.models.infer_signature(
input_example,
mlflow.transformers.generate_signature_output(generation_pipeline, input_example),
parameters,
)

with mlflow.start_run() as run:
model_info = mlflow.transformers.log_model(
transformers_model=generation_pipeline,
artifact_path="text_generator",
inference_config={"max_length": 512, "do_sample": True},
input_example=["prompt 1", "prompt 2", "prompt 3"],
signature=signature,
)
Expand All @@ -28,6 +30,8 @@

print(
sentence_generator.predict(
["tell me a story about rocks", "Tell me a joke about a dog that likes spaghetti"]
["tell me a story about rocks", "Tell me a joke about a dog that likes spaghetti"],
# pass in additional parameters applied to the pipeline during inference
params=parameters,
)
)
14 changes: 13 additions & 1 deletion mlflow/catboost.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import os
import yaml
import contextlib
from typing import Any, Dict, Optional

import mlflow
from mlflow import pyfunc
Expand Down Expand Up @@ -326,7 +327,18 @@ class _CatboostModelWrapper:
def __init__(self, cb_model):
self.cb_model = cb_model

def predict(self, dataframe):
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
): # pylint: disable=unused-argument
"""
:param dataframe: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
return self.cb_model.predict(dataframe)


Expand Down
11 changes: 9 additions & 2 deletions mlflow/diviner.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import pathlib
import yaml
import pandas as pd
from typing import Tuple, List
from typing import Any, Dict, List, Optional, Tuple
import mlflow
from mlflow import pyfunc
from mlflow.environment_variables import MLFLOW_DFS_TMP
Expand Down Expand Up @@ -450,7 +450,9 @@ class _DivinerModelWrapper:
def __init__(self, diviner_model):
self.diviner_model = diviner_model

def predict(self, dataframe) -> pd.DataFrame:
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
) -> pd.DataFrame: # pylint: disable=unused-argument
"""
A method that allows a pyfunc implementation of this flavor to generate forecasted values
from the end of a trained Diviner model's training series per group.
Expand Down Expand Up @@ -482,6 +484,11 @@ def predict(self, dataframe) -> pd.DataFrame:
Will generate 30 days of forecasted values for each group that the model
was trained on.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: A Pandas DataFrame containing the forecasted values for each group key that was
either trained or declared as a subset with a ``groups`` entry in the ``dataframe``
configuration argument.
Expand Down
14 changes: 13 additions & 1 deletion mlflow/fastai/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from pathlib import Path
import pandas as pd
import numpy as np
from typing import Any, Dict, Optional

from mlflow import pyfunc
from mlflow.models import Model, ModelSignature, ModelInputExample
Expand Down Expand Up @@ -357,7 +358,18 @@ class _FastaiModelWrapper:
def __init__(self, learner):
self.learner = learner

def predict(self, dataframe):
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None # pylint: disable=unused-argument
):
"""
:param dataframe: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
dl = self.learner.dls.test_dl(dataframe)
preds, _ = self.learner.get_preds(dl=dl)
return pd.Series(map(np.array, preds.numpy())).to_frame("predictions")
Expand Down
10 changes: 9 additions & 1 deletion mlflow/gluon/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import numpy as np
import pandas as pd
import yaml
from typing import Any, Dict, Optional

import mlflow
from mlflow import pyfunc
Expand Down Expand Up @@ -102,11 +103,18 @@ class _GluonModelWrapper:
def __init__(self, gluon_model):
self.gluon_model = gluon_model

def predict(self, data):
def predict(
self, data, params: Optional[Dict[str, Any]] = None # pylint: disable=unused-argument
):
"""
:param data: Either a pandas DataFrame or a numpy array containing input array values.
If the input is a DataFrame, it will be converted to an array first by a
`ndarray = df.values`.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions. If the input is a pandas.DataFrame, the predictions are returned
in a pandas.DataFrame. If the input is a numpy array, the predictions are returned
as either a numpy.ndarray or a plain list for hybrid models.
Expand Down
14 changes: 13 additions & 1 deletion mlflow/h2o.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import os
import warnings
import yaml
from typing import Any, Dict, Optional

import mlflow
from mlflow import pyfunc
Expand Down Expand Up @@ -269,7 +270,18 @@ class _H2OModelWrapper:
def __init__(self, h2o_model):
self.h2o_model = h2o_model

def predict(self, dataframe):
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
): # pylint: disable=unused-argument
"""
:param dataframe: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
import h2o

predicted = self.h2o_model.predict(h2o.H2OFrame(dataframe)).as_data_frame()
Expand Down
9 changes: 7 additions & 2 deletions mlflow/johnsnowlabs.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
import shutil
import sys
from pathlib import Path
from typing import Any, Dict, Optional

import yaml

Expand Down Expand Up @@ -838,12 +839,16 @@ def __init__(
self.spark = spark or _get_or_create_sparksession()
self.spark_model = spark_model

def predict(self, text, output_level=""):
def predict(self, text, params: Optional[Dict[str, Any]] = None):
"""
Generate predictions given input data in a pandas DataFrame.
:param output_level:
:param text: pandas DataFrame containing input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: List with model predictions.
"""
output_level = params.get("output_level", "") if params else ""
return self.spark_model.predict(text, output_level=output_level).reset_index().to_json()
30 changes: 27 additions & 3 deletions mlflow/langchain/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
import shutil
import types
from packaging import version
from typing import Any, Dict, List, Union
from typing import Any, Dict, List, Optional, Union

import pandas as pd
import cloudpickle
Expand Down Expand Up @@ -638,7 +638,20 @@ class _LangChainModelWrapper:
def __init__(self, lc_model):
self.lc_model = lc_model

def predict(self, data: Union[pd.DataFrame, List[Union[str, Dict[str, Any]]]]) -> List[str]:
def predict( # pylint: disable=unused-argument
self,
data: Union[pd.DataFrame, List[Union[str, Dict[str, Any]]]],
params: Optional[Dict[str, Any]] = None, # pylint: disable=unused-argument
) -> List[str]:
"""
:param data: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
from mlflow.langchain.api_request_parallel_processor import process_api_requests

if isinstance(data, pd.DataFrame):
Expand All @@ -659,7 +672,18 @@ class _TestLangChainWrapper(_LangChainModelWrapper):
A wrapper class that should be used for testing purposes only.
"""

def predict(self, data):
def predict(
self, data, params: Optional[Dict[str, Any]] = None # pylint: disable=unused-argument
):
"""
:param data: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
import langchain
from tests.langchain.test_langchain_model_export import _mock_async_request

Expand Down
14 changes: 13 additions & 1 deletion mlflow/lightgbm.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import functools
from copy import deepcopy
from packaging.version import Version
from typing import Any, Dict, Optional

import mlflow
from mlflow import pyfunc
Expand Down Expand Up @@ -464,7 +465,18 @@ class _LGBModelWrapper:
def __init__(self, lgb_model):
self.lgb_model = lgb_model

def predict(self, dataframe):
def predict(
self, dataframe, params: Optional[Dict[str, Any]] = None
): # pylint: disable=unused-argument
"""
:param dataframe: Model input data.
:param params: Additional parameters to pass to the model for inference.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: Model predictions.
"""
return self.lgb_model.predict(dataframe)


Expand Down
1 change: 1 addition & 0 deletions mlflow/ml-package-versions.yml
Original file line number Diff line number Diff line change
Expand Up @@ -513,6 +513,7 @@ transformers:
"accelerate", # required for large torch models where weights will not fit in RAM
"librosa", # required for transformers audio pipelines for bitrate conversion
"ffmpeg", # required for transformers audio pipelines for audio byte to numpy conversion
"sentencepiece", # required for transformers text2text generation pipeline
]
# tensorflow 2.13.0 made all Keras private functions inaccessible. transformers versions
# prior to 4.30.0 are incompatible with this breaking change in Keras.
Expand Down
5 changes: 5 additions & 0 deletions mlflow/models/evaluation/default_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
JsonEvaluationArtifact,
)
from mlflow.pyfunc import _ServedPyFuncModel
from mlflow.sklearn import _SklearnModelWrapper
from mlflow.utils.proto_json_utils import NumpyEncoder
from mlflow.utils.time_utils import get_current_time_millis

Expand Down Expand Up @@ -79,6 +80,10 @@ def _infer_model_type_by_labels(labels):
def _extract_raw_model(model):
model_loader_module = model.metadata.flavors["python_function"]["loader_module"]
if model_loader_module == "mlflow.sklearn" and not isinstance(model, _ServedPyFuncModel):
# If we load a sklearn model with mlflow.pyfunc.load_model, the model will be wrapped
# with _SklearnModelWrapper, we need to extract the raw model from it.
if isinstance(model._model_impl, _SklearnModelWrapper):
return model_loader_module, model._model_impl.sklearn_model
return model_loader_module, model._model_impl
else:
return model_loader_module, None
Expand Down
Loading

0 comments on commit 589ca04

Please sign in to comment.