-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRetrieve_images_from_HRM.py
1050 lines (916 loc) · 42.4 KB
/
Retrieve_images_from_HRM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
MIF/Retrieve_images_from_HRM.py
Retrieve images from HRM-Share folder to OMERO with parameters and log file.
-----------------------------------------------------------------------------
Copyright (C) 2023
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
------------------------------------------------------------------------------
Created by Rémy Dornier, based on the work of Niko Ehrenfeuchter from IMCF, Basel (https://github.com/imcf/hrm-omero)
"""
import os
import re
import omero
from bs4 import BeautifulSoup
import omero.scripts as scripts
import omero.model as model
from omero.gateway import BlitzGateway
from omero.gateway import DatasetWrapper
from omero.gateway import MapAnnotationWrapper
from omero.gateway import TagAnnotationWrapper
from omero.rtypes import rstring
from omero.plugins.sessions import SessionsControl
from omero.cli import CLI
import tempfile
from datetime import date
import yaml
from importlib import import_module
ImportControl = import_module("omero.plugins.import").ImportControl
SERVER_PARAM_NAME = "OMERO_server"
PORT_PARAM_NAME = "Port"
DELETE_DECONVOLVED_PARAM_NAME = "Delete_deconvolved_images_on_HRM"
DELETE_RAW_PARAM_NAME = "Delete_raw_images_on_HRM"
# ********************* All the following methods are taken from https://github.com/imcf/hrm-omero ****************
def to_omero(conn, cli, host, port, dataset_id, image_file, omero_logfile="", _fetch_zip_only=False):
"""Upload an image into a specific dataset in OMERO.
In case we know from the suffix that a given format is not supported by OMERO, the
upload will not be initiated at all (e.g. for SVI-HDF5, having the suffix '.h5').
The import itself is done by instantiating the CLI class, assembling the required
arguments, and finally running `cli.invoke()`. This eventually triggers the
`importer()` method defined in [OMERO's Python bindings][1].
[1]: https://github.com/ome/omero-py/blob/master/src/omero/plugins/import.py
Parameters
----------
conn : omero.gateway.BlitzGateway
The OMERO connection object.
cli: omero.cli.CLI object
command line object to upload images on the server
host: String
current hostname address
port: int
the OMERO communication port
dataset_id : hrm_omero.misc.OmeroId
The ID of the target dataset in OMERO.
image_file : str
The local image file including the full path.
omero_logfile : str, optional
The prefix of files to be used to capture OMERO's `import` call stderr messages.
If the parameter is non-empty the `--debug ALL` option will be added to the
`omero` call with the output being placed in the specified file. If the
parameter is omitted or empty, debug messages will be disabled.
_fetch_zip_only : bool, optional
Replaces all parameters to the import call by `--advanced-help`, which is
**intended for INTERNAL TESTING ONLY**. No actual import will be attempted!
Returns
-------
hrm_omero.misc.OmeroId
The ID of the newly imported image, None otherwise.
Raises
------
TypeError
Raised in case `image_file` is in a format that is not supported by OMERO.
ValueError
Raised in case `omero_id` is not pointing to a dataset.
"""
# TODO: revisit this, as e.g. BDV .h5 files are supported for now!
# if image_file.lower().endswith((".h5", ".hdf5")):
# msg = f"ERROR importing [{image_file}]: HDF5 format not supported by OMERO!"
# print(msg)
# raise TypeError(msg)
if dataset_id.obj_type != "Dataset":
msg = "Currently only the upload to 'Dataset' objects is supported!"
print(msg)
raise ValueError(msg)
# we have to create the annotations *before* we actually upload the image
# data itself and link them to the image during the upload - the other way
# round is not possible right now as the CLI wrapper (see below) doesn't
# expose the ID of the newly created object in OMERO (confirmed by J-M and
# Sebastien on the 2015 OME Meeting):
#### namespace = "deconvolved.hrm"
#### mime = 'text/plain'
#### annotations = []
#### # TODO: the list of suffixes should not be hardcoded here!
#### for suffix in ['.hgsb', '.log.txt', '.parameters.txt']:
#### if not os.path.exists(basename + suffix):
#### continue
#### ann = conn.createFileAnnfromLocalFile(
#### basename + suffix, mimetype=mime, ns=namespace, desc=None)
#### annotations.append(ann.getId())
# currently there is no direct "Python way" to import data into OMERO, so we have to
# use the CLI wrapper for this...
# TODO: check the more recent code mentioned by the OME developers in the forum
# thread: https://forum.image.sc/t/automated-uploader-to-omero-in-python/38290
# https://gitlab.com/openmicroscopy/incubator/omero-python-importer/-/blob/master/import.py)
# and also see https://pypi.org/project/omero-upload/
# modified from Niko's job
import_args = ["import",
'-k', str(conn._getSessionId()),
'-s', host,
'-p', str(port),
"--skip", "upgrade"
# disable upgrade checks (https://forum.image.sc/t/unable-to-use-cli-importer/26424)
]
if omero_logfile:
print("WARNING", f"Messages (stderr) from import will go to [{omero_logfile}].")
import_args.extend(["--debug", "ALL"])
import_args.extend(["--errs", omero_logfile])
import_args.extend(["-d", dataset_id.obj_id])
# capture stdout and request YAML format to parse the output later on:
tempdir = tempfile.TemporaryDirectory(prefix="hrm-omero__")
cap_stdout = f"{tempdir.name}/omero-import-stdout"
print("DEBUG", f"Capturing stdout of the 'omero' call into [{cap_stdout}]...")
import_args.extend(["--file", cap_stdout])
import_args.extend(["--output", "yaml"])
#### for ann_id in annotations:
#### import_args.extend(['--annotation_link', str(ann_id)])
import_args.append(image_file)
if _fetch_zip_only:
# calling 'import --advanced-help' will trigger the download of OMERO.java.zip
# in case it is not yet present (the extract_image_id() call will then fail,
# resulting in the whole function returning "False")
print("WRANING", "As '_fetch_zip_only' is set NO IMPORT WILL BE ATTEMPTED!")
import_args = ["import", "--advanced-help"]
print("DEBUG", f"import_args: {import_args}")
try:
cli.invoke(import_args, strict=True)
cli.get_client().closeSession() # force killing the session
#cli.close() # see if it doesn't crash
imported_id = extract_image_id(cap_stdout)
print("SUCCESS", f"Imported OMERO image ID: {imported_id}")
except PermissionError as err:
print("ERROR", err)
omero_userdir = os.environ.get("OMERO_USERDIR", "<not-set>")
print("ERROR", f"Current OMERO_USERDIR value: {omero_userdir}")
print("ERROR",
(
"Please make sure to read the documentation about the 'OMERO_USERDIR' "
"environment variable and also check if the file to be imported has "
"appropriate permissions!"
),
)
return None
except Exception as err: # pylint: disable-msg=broad-except
print("ERROR", f"ERROR: uploading '{image_file}' to {dataset_id} failed!")
print("ERROR", f"OMERO error message: >>>{err}<<<")
print("WARNING", f"import_args: {import_args}")
return None
finally:
tempdir.cleanup()
return OmeroId(f"G:{dataset_id.group}:Image:{imported_id}") # modify from Niko's job
def attach_log_file(conn, target_id, image_file):
"""Add an txt file as attachement to an OMERO object.
Parameters
----------
conn : omero.gateway.BlitzGateway
The OMERO connection object.
target_id : hrm_omero.misc.OmeroId
The ID of the OMERO object that should receive the annotation.
image_file : str
The path to the image file.
"""
# get omero object
omero_object = conn.getObject(target_id.obj_type, target_id.obj_id)
# get the file to attach
suffix = ".log.txt"
if not image_file.endswith(suffix):
candidate = parse_job_basename(image_file) + suffix
if os.path.exists(candidate):
print("DEBUG", f"Found [{candidate}], will use it instead of [{image_file}].")
file_to_upload = candidate
else:
print("ERROR", f"The file {candidate} does not exists")
return
else:
file_to_upload = image_file
print("DEBUG", f"Trying attach [{file_to_upload}] file to {target_id.obj_type} {target_id.obj_id}...")
# create the original file and file annotation (uploads the file etc.)
namespace = "hrm.deconvolution.log"
print("\nCreating an OriginalFile and FileAnnotation")
file_ann = conn.createFileAnnfromLocalFile(
file_to_upload, mimetype="text/plain", ns=namespace, desc=None)
# attach the file to the object
print("Attaching FileAnnotation to Dataset: ", "File ID:", file_ann.getId(),
",", file_ann.getFile().getName(), "Size:", file_ann.getFile().getSize())
omero_object.linkAnnotation(file_ann)
def extract_image_id(fname):
"""Parse the YAML returned by an 'omero import' call and extract the image ID.
Parameters
----------
fname : str
The path to the `yaml` file to parse.
Returns
-------
int or None
The OMERO ID of the newly imported image, e.g. `1568386` or `None` in case
parsing the file failed for any reason.
"""
try:
with open(fname, "r", encoding="utf-8") as stream:
parsed = yaml.safe_load(stream)
if len(parsed[0]["Image"]) != 1:
msg = f"Unexpected YAML retrieved from OMERO, unable to parse:\n{parsed}"
print("ERROR", msg)
raise SyntaxError(msg)
image_id = parsed[0]["Image"][0]
except Exception as err: # pylint: disable-msg=broad-except
print("ERROR", f"Error parsing imported image ID from YAML output: {err}")
return None
print("SUCCESS", f"Successfully parsed Image ID from YAML: {image_id}")
return image_id
def add_annotation_key_value(conn, omero_id_obj, annotation):
"""Add a key-value "map" annotation to an OMERO object.
Parameters
----------
conn : omero.gateway.BlitzGateway
The OMERO connection object.
omero_id_obj : hrm_omero.misc.OmeroId
The ID of the OMERO object that should receive the annotation.
annotation : dict(dict)
The map annotation as returned by `hrm_omero.hrm.parse_summary()`.
Returns
-------
bool
True in case of success, False otherwise.
Raises
------
RuntimeError
Raised in case re-establishing the OMERO connection fails.
"""
print("TRACE", f"Adding a map annotation to {omero_id_obj}")
if omero_id_obj is None:
print("ERROR", f"{omero_id_obj} is not a valid ID in OMERO!")
return False
target_obj = conn.getObject(omero_id_obj.obj_type, omero_id_obj.obj_id)
if target_obj is None:
print("ERROR", f"Unable to identify target object {omero_id_obj.obj_id} in OMERO!")
return False
for section in annotation:
namespace = f"Huygens Remote Manager - {section}"
map_ann = MapAnnotationWrapper(conn)
map_ann.setValue(annotation[section].items())
map_ann.setNs(namespace)
map_ann.save()
target_obj.linkAnnotation(map_ann)
print("DEBUG", f"Added key-value annotation using namespace [{namespace}].")
print("SUCCESS", f"Added annotation to {target_obj.getId()} : {annotation}")
return True
def add_tags(conn, target_img_id_obj, dataset_id_obj):
"""Add tags annotation to an OMERO object.
Parameters
----------
conn : omero.gateway.BlitzGateway
The OMERO connection object.
target_img_id_obj : hrm_omero.misc.OmeroId
The ID of the OMERO object that should receive the annotation.
dataset_id_obj: hrm_omero.misc.OmeroId
The ID of the target dataset
Returns
-------
bool
True in case of success, False otherwise.
"""
print("TRACE", f"Adding a tags to {target_img_id_obj}")
if target_img_id_obj is None:
print("ERROR", f"{target_img_id_obj} is not a valid ID in OMERO!")
return False
target_img_obj = conn.getObject(target_img_id_obj.obj_type, target_img_id_obj.obj_id)
if target_img_obj is None:
print("ERROR", f"Unable to identify target object {target_img_id_obj.obj_id} in OMERO!")
return False
deconvolved_img_name = target_img_obj.getName()
dataset_obj = conn.getObject(dataset_id_obj.obj_type, dataset_id_obj.obj_id)
img_base_name = parse_image_basename(deconvolved_img_name)
raw_img_obj = None
print("INFO", f"Image base name : {img_base_name}")
# get the raw image
for dataset_image_obj in dataset_obj.listChildren():
if (img_base_name in dataset_image_obj.getName()) and (not (dataset_image_obj.getName() == deconvolved_img_name)):
raw_img_obj = dataset_image_obj
break
raw_tag_value = "raw"
deconvolved_tag_value = "deconvolved"
hrm_tag_value = "hrm"
if raw_img_obj is not None:
# get all tags from the raw image
raw_img_tag_obj_list = []
# list all tag from the raw image
for ann in raw_img_obj.listAnnotations():
if ann.OMERO_TYPE == omero.gateway.TagAnnotationI:
raw_img_tag_obj_list.append(ann)
# transfer tags from raw image to deconvolved image
raw_img_tag_value_list = []
for raw_img_tag_obj in raw_img_tag_obj_list:
# remove the tag "raw" that should be specific to raw images
if not raw_img_tag_obj.getTextValue().lower() == raw_tag_value.lower():
target_img_obj.linkAnnotation(raw_img_tag_obj)
raw_img_tag_value_list.append(raw_img_tag_obj.getTextValue())
print("INFO", f"Transfer the following tags from raw to deconvolved image : {raw_img_tag_value_list}")
# create raw tag
tag_list = [raw_tag_value, hrm_tag_value]
print("INFO", f"Adding the following tag to the raw image : {tag_list}")
check_existence_and_add_tag_objs(conn, tag_list, raw_img_obj, raw_img_tag_obj_list)
# create deconvolved tag
tag_list = [deconvolved_tag_value, hrm_tag_value]
print("INFO", f"Adding the following tag to the deconvolved image : {tag_list}")
check_existence_and_add_tag_objs(conn, tag_list, target_img_obj)
return True
def check_existence_and_add_tag_objs(conn, tag_value_list, target_obj, reference_tag_obj_list=None):
"""Add tags annotation to an OMERO object.
Parameters
----------
conn : omero.gateway.BlitzGateway
The OMERO connection object.
tag_value_list : List of string
tags to add to the target object
target_obj: omero.model.DataObject
The target object on OMERO
reference_tag_obj_list: List of omero.model.TagAnnotationI objects
Tags that are already linked to the target object
"""
if reference_tag_obj_list is None:
reference_tag_obj_list = []
# list all available tags
group_tag_obj_list = conn.getObjects('TagAnnotation')
# loop over the tags to link
for tag_value in tag_value_list:
new_tag_obj = None
# check if the current tag already exists in the DB
for group_tag_obj in group_tag_obj_list:
if tag_value.lower() == group_tag_obj.getTextValue().lower():
new_tag_obj = group_tag_obj
print("INFO", f"Tag {tag_value.lower()} already exists in the DB")
break
# if the tag doesn't exist yet, create it
if new_tag_obj is None:
print("INFO", f"Tag {tag_value.lower()} doesn't exist in the DB ; create it")
new_tag_obj = TagAnnotationWrapper(conn)
new_tag_obj.setValue(tag_value)
new_tag_obj.save()
to_link = True
for reference_tag_obj in reference_tag_obj_list:
# if the tag is already link to the target, don't link it twice
if reference_tag_obj.getTextValue().lower() == new_tag_obj.getTextValue().lower():
to_link = False
print("INFO", f"Tag {tag_value.lower()} already linked to {type(target_obj)} : {target_obj.getId()}")
break
# link the tag
if to_link:
print("INFO", f"Link tag {tag_value.lower()} to {type(target_obj)} : {target_obj.getId()}")
target_obj.linkAnnotation(new_tag_obj)
def parse_summary(fname):
"""Parse the job parameter summary generated by HRM into a dict.
Parse the HTML file generated by the HRM containing the parameter summary and
generate a nested dict from it. The HTML file is assumed to contain three `<table>`
items that contain a single `<td class="header">` item with the title and a `<tr>`
section with four `<td>` items per parameter (being *parameter-name*, *channel*,
*source* and *value*), e.g. something of this form:
```
_____________________________________________
|___________________title___________________|
|_________________(ignored)_________________|
| parameter-name | channel | source | value |
...
| parameter-name | channel | source | value |
---------------------------------------------
```
Parameters
----------
fname : str
The filename of the job's HTML parameter summary or (e.g.) the resulting image
file. In case `fname` doesn't end in the common parameter summary suffix (for
example if the image file name was provided), the function tries to derive the
name of summary file and use that one for parsing.
Returns
-------
dict(dict)
A dict with the parsed section names (table titles) being the keys, each
containing another dict with the parameter names as keys (including the channel
unless the parameter is channel-independent). See the example below.
Example
-------
>>> parse_summary('image_001.parameters.txt')
... {
... "Image Parameters": {
... "Emission wavelength (nm) [ch:0]": "567.000",
... "Excitation wavelength (nm) [ch:0]": "456.000",
... "Lens refractive index [ch:0]": "4.567",
... "Microscope type [ch:0]": "widefield",
... "Numerical aperture [ch:0]": "2.345",
... "Point Spread Function": "theoretical",
... "Sample refractive index [ch:0]": "3.456",
... "Time interval (s)": "1.000000",
... "X pixel size (μm)": "0.123456",
... "Y pixel size (μm)": "0.123456",
... "Z step size (μm)": "0.234567",
... },
... "Restoration Parameters": {
... "Autocrop": "no",
... "Background estimation": "auto",
... "Deconvolution algorithm": "iiff",
... "Number of iterations": "42",
... "Quality stop criterion": "0.000007",
... "Signal/Noise ratio [ch:0]": "99",
... },
... }
"""
# In case `fname` doesn't end with the common suffix for job summary files check if
# it is the actual *image* filename of an HRM job and try to use the corresponding
# parameter summary file instead:
suffix = ".parameters.txt"
if not fname.endswith(suffix):
candidate = parse_job_basename(fname) + ".parameters.txt"
if os.path.exists(candidate):
print("DEBUG", f"Found [{candidate}], will use it instead of [{fname}].")
fname = candidate
print("DEBUG", f"Trying to parse job parameter summary file [{fname}]...")
try:
with open(fname, "r", encoding="utf-8") as soupfile:
soup = BeautifulSoup(soupfile, features="html.parser")
print("TRACE", f"BeautifulSoup successfully parsed [{fname}].")
except IOError as err:
print("ERROR", f"Unable to open parameter summary file [{fname}]: {err}")
return None
except Exception as err: # pragma: no cover # pylint: disable-msg=broad-except
print("ERROR", f"Parsing summary file [{fname}] failed: {err}")
return None
sections = {} # job parameter summaries have multiple sections split by headers
rows = []
for table in soup.findAll("table"):
print("TRACE", "Parsing table header...")
try:
rows = table.findAll("tr")
header = rows[0].findAll("td", class_="header")[0].text
except Exception: # pylint: disable-msg=broad-except
print("DEBUG", "Skipping table entry that doesn't have a header.")
continue
print("TRACE", f"Parsed table header: {header}")
if header in sections:
raise KeyError(f"Error parsing parameters, duplicate header: {header}")
pairs = {}
# and the table body, starting from the 3rd <tr> item:
for row in rows[2:]:
cols = row.findAll("td")
# parse the parameter "name":
param_key = cols[0].text
print("TRACE", f"Parsed (raw) key name: {param_key}")
# replace HTML-encoded chars:
param_key = param_key.replace("μm", "µm")
# parse the channel and add it to the key-string (unless it's "All"):
channel = cols[1].text
if channel == "All":
channel = ""
else:
channel = f" [ch:{channel}]"
param_key += channel
# parse the parameter value:
param_value = cols[3].text
# finally add a new entry to the dict unless the key already exists:
if param_key in pairs:
raise KeyError(f"Parsing failed, duplicate parameter: {param_key}")
pairs[param_key] = param_value
sections[header] = pairs
print("SUCCESS", f"Processed {len(rows)} table rows.")
return sections
def parse_job_basename(file_name):
"""Parse the basename from an HRM job result file name.
HRM job IDs are generated via PHP's `uniqid()` call that is giving a 13-digit
hexadecimal string (8 digits UNIX time and 5 digits microseconds). The HRM labels its
result files by appending an underscore (`_`) followed by this ID and an `_hrm`
suffix. This function tries to match this section and remove everything *after* it
from the name.
Its intention is to safely remove the suffix from an image file name while taking no
assumptions about how the suffix looks like (could e.g. be `.ics`, `.ome.tif` or
similar).
Parameters
----------
file_name : str
The input string, usually the name of an HRM result file (but any string is
accepted).
Returns
-------
str
The input string (`file_name`) where everything *after* an HRM-like job label (e.g.
`_abcdef0123456_hrm` or `_f435a27b9c85e_hrm`) is removed. In case the input
string does *not* contain a matching section it is returned
"""
print("TRACE", f"parse_job_basename - full name : {file_name}")
basename = re.sub(r"(_[0-9a-f]{13}_hrm)\..*", r"\1", file_name)
print("TRACE", f"parse_job_basename - HRM base name : {basename}")
return basename
def parse_image_basename(file_name):
"""Parse the basename of the image from the HRM job IDs name. It removes all characters
after
Parameters
----------
file_name : str
The input string, usually the name of an HRM result file
Returns
-------
str
The input string (`file_name`) where everything *after* an HRM-like job label (e.g.
`_abcdef0123456_hrm` or `_f435a27b9c85e_hrm`) is removed, including the job name itself. It
only remains the raw image name without the original extension.
"""
print("TRACE", f"parse_image_basename - full name : {file_name}")
hrm_name = re.search(r"(_[0-9a-f]{13}_hrm)\..*", file_name)
print("TRACE", f"parse_image_basename - HRM job name : {hrm_name.group(0)}")
basename = file_name.replace(hrm_name.group(0), "")
print("TRACE", f"parse_image_basename - Raw image basename : {basename}")
return basename
class OmeroId:
"""Representation of a (group-qualified) OMERO object ID.
The purpose of this class is to facilitate parsing and access of the
ubiquitious target IDs denoting objects in OMERO. The constructor takes
the common string of the form `G:[gid]:[type]:[iid]` as an input and sets
the properties `group`, `obj_type` and `obj_id` accordingly after validating
their contents for having reasonable values.
Attributes
----------
group : str
The OMERO group ID as an int-like `str`.
obj_type : str
The OMERO object type, e.g. `Experimenter`, `Image`, ...
obj_id : str
The OMERO object ID as an int-like `str`.
"""
def __init__(self, id_str):
self.group = None
self.obj_type = None
self.obj_id = None
self.parse_id_str(id_str)
def parse_id_str(self, id_str):
"""Parse and validate an ID string of the form `G:[gid]:[type]:[oid]`
The method will parse the given string and set the object's `group`, `obj_type`
and `obj_id` values accordingly. In case for `id_str` the special value `ROOT`
was supplied, `group` and `obj_id` will be set to `-1` whereas `obj_type` will
be set to `BaseTree`.
Parameters
----------
id_str : str
The ID of an OMERO object, e.g.
* `G:23:Image:42`
* `G:4:Dataset:765487`
* special case `ROOT`, same as `G:-1:BaseTree:-1`
Raises
------
ValueError
Raised in case a malformed `id_str` was given.
"""
print("TRACE", f"Parsing ID string: [{id_str}]")
if id_str == "ROOT":
self.group = -1
self.obj_type = "BaseTree"
self.obj_id = -1
print("DEBUG", f"Converted special ID 'ROOT' to [{str(self)}].")
return
try:
group_type, group_id, obj_type, obj_id = id_str.split(":")
int(group_id) # raises a TypeError if cast to int fails
int(obj_id) # raises a TypeError if cast to int fails
if group_type != "G":
raise ValueError(f"Invalid group qualifier '{group_type}'.")
if obj_type not in [
"Image",
"Dataset",
"Project",
"Experimenter",
"ExperimenterGroup",
]:
raise ValueError(f"Invalid object type '{obj_type}'.")
if int(obj_id) < 1:
raise ValueError(f"Invalid object ID '{obj_id}'.")
except (ValueError, TypeError) as err:
# pylint: disable-msg=raise-missing-from
msg = f"Malformed id_str '{id_str}', expecting `G:[gid]:[type]:[oid]`."
raise ValueError(msg, err)
print("DEBUG", f"Validated ID string: group={group_id}, {obj_type}={obj_id}")
self.group = group_id
self.obj_type = obj_type
self.obj_id = obj_id
def __str__(self):
return f"G:{self.group}:{self.obj_type}:{self.obj_id}"
# ****************************************************************************************************************************
# This method is taken from ezomero project :
# https://github.com/TheJacksonLaboratory/ezomero/blob/main/ezomero/_posts.py#L377
def create_dataset(conn, dataset_name, description=None):
"""Create a new dataset.
Parameters
----------
conn : ``omero.gateway.BlitzGateway`` object
OMERO connection.
dataset_name : str
Name of the new object to be created.
description : str, optional
Description for the new Dataset.
Returns
-------
dataset_id : int
Id of the new Dataset.
Notes
-----
Dataset will be created in the Group specified in the connection. Group can
be changed using ``conn.SERVICE_OPTS.setOmeroGroup``.
Examples
--------
>>> dataset_id = create_project(conn, "My New Dataset")
>>> print(dataset_id)
238
"""
if type(dataset_name) is not str:
raise TypeError('Dataset name must be a string')
if type(description) is not str and description is not None:
raise TypeError('Dataset description must be a string')
dataset = DatasetWrapper(conn, model.DatasetI())
dataset.setName(dataset_name)
if description is not None:
dataset.setDescription(description)
dataset.save()
return dataset.getId()
def list_images_to_upload(conn, owner, root):
"""List images to upload on OMERO from Deconvolution/omero HRM folder.
Parameters
----------
conn : ``omero.gateway.BlitzGateway`` object
OMERO connection.
owner : str
Name of the current logged in user
root : str
absolute path of HRM-Share folder (from the root mounted on the server)
Returns
-------
image_path_dataset_id_map : dict
dictionary {image_path:dataset_id} of all images to upload, excluding those that already exists on OMERO.
path : str
path that raise an error because the last folder does not exist
n_initial_images : int
Number of images in Deconvolution/omero folder
"""
image_path_dataset_id_map = {}
n_initial_images = 0
if os.path.isdir(root):
owner_folder = os.path.join(root, owner)
if not os.path.isdir(owner_folder):
print("You don't have an active account on HRM. Please go on https://hrm-biop.epfl.ch/ and sign in to HRM")
print("If you do not have any HRM account, please go on https://hrm-biop.epfl.ch/ and ask for an HRM account")
return None, owner_folder, -1
deconvolved_folder = os.path.join(owner_folder, "Deconvolved")
if not os.path.isdir(deconvolved_folder):
return None, deconvolved_folder, -1
omero_folder = os.path.join(deconvolved_folder, "omero")
if not os.path.isdir(omero_folder):
return None, omero_folder, -1
# list projects
for project_name in os.listdir(omero_folder):
# filter any .DS_store, .git and Thumbs.db
if project_name.startswith(".") or project_name.endswith("Thumbs.db"):
continue
project_folder = os.path.join(omero_folder, project_name)
if not os.path.isdir(project_folder):
return None, project_folder, -1
# list datasets
for dataset_name in os.listdir(project_folder):
# filter any .DS_store, .git and Thumbs.db
if dataset_name.startswith(".") or dataset_name.endswith("Thumbs.db"):
continue
dataset_folder = os.path.join(project_folder, dataset_name)
if not os.path.isdir(dataset_folder):
return None, dataset_folder, -1
# images within a dsataset
if not dataset_name == "None":
d_name_split = dataset_name.split("_")
dataset_id = d_name_split[0]
dataset = conn.getObject('Dataset', dataset_id)
if dataset is not None:
for fileset_name in os.listdir(dataset_folder):
fileset_folder = os.path.join(dataset_folder, fileset_name)
for image_name in os.listdir(fileset_folder):
# filter only ids images
if ".ids" in image_name: # .ids
already_existing_image = False
n_initial_images += 1
dataset_images = dataset.listChildren()
# filter image that does not already exist in omero
for ex_image in dataset_images:
if ex_image.getName() == image_name:
already_existing_image = True
break
if not already_existing_image:
image_path_dataset_id_map[os.path.join(fileset_folder, image_name)] = dataset_id
# orphaned images
else:
dataset_created = False
orphaned_dataset_id = -1
for fileset_name in os.listdir(dataset_folder):
fileset_folder = os.path.join(dataset_folder, fileset_name)
for image_name in os.listdir(fileset_folder):
# filter only ids images
if ".ids" in image_name: # .ids
n_initial_images += 1
# create a new for orphaned images
if not dataset_created:
orphaned_dataset_id = create_dataset(conn, f"HRM-{date.today()}")
dataset_created = True
image_path_dataset_id_map[os.path.join(fileset_folder, image_name)] = orphaned_dataset_id
return image_path_dataset_id_map, None, n_initial_images
else:
return None, root, -1
def delete_uploaded_files(image_path):
"""Delete image in the deconvolved folder
----------
image_path : str
Path to image to delete.
Returns
-------
bool
True in case of success, False otherwise.
"""
# file name with extension
image_name = os.path.basename(image_path)
# file name without extension
image_name_without_ext = os.path.splitext(image_name)[0]
# parent file
parent_folder = os.path.abspath(os.path.join(image_path, os.pardir))
for path in os.listdir(parent_folder):
# check if current path is a file
file = os.path.join(parent_folder, path)
if os.path.isfile(file) and ((image_name_without_ext in file) or (".DS_Store" in file) or ("Thumbs.db" in file)):
print("INFO", f"Delete file [{file}]")
os.remove(file)
if len(os.listdir(parent_folder)) == 0:
parent_parent_folder = os.path.abspath(os.path.join(parent_folder, os.pardir))
print("INFO", f"Delete parent directory [{parent_folder}]")
os.rmdir(parent_folder)
if len(os.listdir(parent_parent_folder)) == 0:
print("INFO", f"Delete parent directory [{parent_parent_folder}]")
os.rmdir(parent_parent_folder)
def delete_raw_files(image_path):
"""Delete image
----------
image_path : str
Path to image to delete.
Returns
-------
bool
True in case of success, False otherwise.
"""
# file name with extension
image_name = os.path.basename(image_path)
# file name without extension
raw_image_name_without_ext = parse_image_basename(image_name)
# parent file
parent_folder = os.path.abspath(os.path.join(image_path, os.pardir))
parent_folder = parent_folder.replace("Deconvolved", "Raw")
if os.path.exists(parent_folder):
for path in os.listdir(parent_folder):
# check if current path is a file
file = os.path.join(parent_folder, path)
if os.path.isfile(file) and (raw_image_name_without_ext in file):
print("INFO", f"Delete file [{file}]")
os.remove(file)
if len(os.listdir(parent_folder)) == 0:
parent_parent_folder = os.path.abspath(os.path.join(parent_folder, os.pardir))
print("INFO", f"Delete parent directory [{parent_folder}]")
os.rmdir(parent_folder)
if len(os.listdir(parent_parent_folder)) == 0:
print("INFO", f"Delete parent directory [{parent_parent_folder}]")
os.rmdir(parent_parent_folder)
else:
print("WARN", f"The path{parent_folder} does not exist ; raw images are not deleted")
def upload_images_from_hrm(conn, script_params):
"""Upload images from HRM-SHare folder
Parameters
----------
conn : ``omero.gateway.BlitzGateway`` object
OMERO connection.
script_params : dict
User defined parameters
Returns
-------
message : str
Informative message for the user.
"""
# OMERO host
host = script_params[SERVER_PARAM_NAME]
# OMERO port
port = script_params[PORT_PARAM_NAME]
# remove existing images
delete_uploaded_images = script_params[DELETE_DECONVOLVED_PARAM_NAME]
# remove existing images
delete_raw_images = script_params[DELETE_RAW_PARAM_NAME]
# root path to HRM-Share folder
root = "/mnt/hrmshare"
# current logged in user
owner = conn.getUser().getOmeName()
# current group ID
group_id = conn.getGroupFromContext().getId()
# list of images to upload
image_path_dataset_id_map, failed_path, n_initial_images = list_images_to_upload(conn, owner, root)
if image_path_dataset_id_map is not None:
# open the connection
cli = CLI()
cli.register('import', ImportControl, '_')
cli.register('sessions', SessionsControl, '_')
total_images = len(image_path_dataset_id_map)
total_images_uploaded = 0
total_kvps_uploaded = 0
total_tags_uploaded = 0
total_files_uploaded = 0
try:
for image in image_path_dataset_id_map.items():
# built the object ID
dataset_id = image[1]
image_path = image[0]
dataset_id_obj = OmeroId(f"G:{group_id}:Dataset:{dataset_id}")
# upload image on omero
image_id_obj = to_omero(conn, cli, host, port, dataset_id_obj, image_path)
total_images_uploaded += (1 if image_id_obj is not None else 0)
has_failed = False
# add deconvolution parameters as key-value pairs
try:
summary = parse_summary(image_path)
total_kvps_uploaded += (1 if add_annotation_key_value(conn, image_id_obj, summary) else 0)
except Exception as err: # pragma: no cover # pylint: disable-msg=broad-except
print("ERROR", f"Fail creating a parameter summary from [{image_path}] : {err}")
has_failed = True
# transfer tag from raw to deconvolved image
try:
total_tags_uploaded += (1 if add_tags(conn, image_id_obj, dataset_id_obj) else 0)
except Exception as err:
print("ERROR", f"Fail adding tags from raw image to image [{image_id_obj}] : {err}")
has_failed = True
# attach the log file to the image
try:
total_files_uploaded += (1 if attach_log_file(conn, image_id_obj, image_path) else 0)
except Exception as err:
print("ERROR", f"Fail attaching log file from [{image_path}] to image {image_id_obj.obj_id} : {err}")
has_failed = True
if image_id_obj is not None and not has_failed:
if delete_uploaded_images:
delete_uploaded_files(image_path)
if delete_raw_images:
delete_raw_files(image_path)
finally:
cli.close()
n_existing_images = n_initial_images - total_images
message = f"{total_images_uploaded} / {n_initial_images} images uploaded and" \
f" {n_existing_images} / {n_initial_images} images already existing -- " \
f"{total_kvps_uploaded} / {n_initial_images} images have KVP added -- " \
f"{total_tags_uploaded} / {n_initial_images} images have tags transferred -- " \
f"{total_files_uploaded} / {n_initial_images} images have files added"
else:
if n_initial_images == 0:
message = f"There is no image to upload"
else:
message = f"The path {failed_path} is not valid. Cannot upload any images."
return message
def run_script():