-
Notifications
You must be signed in to change notification settings - Fork 478
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b277c7f
commit 0a9beee
Showing
47 changed files
with
3,400 additions
and
4 deletions.
There are no files selected for viewing
130 changes: 130 additions & 0 deletions
130
PlatEMO/Algorithms/Multi-objective optimization/EMOSKT/EMOSKT.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
classdef EMOSKT < ALGORITHM | ||
% <2024> <multi> <real/binary> <large/none> <constrained/none> <sparse> <multitask> | ||
% Evolutionary multi-objective optimization with sparsity knowledge transfer | ||
|
||
%------------------------------- Reference -------------------------------- | ||
% C. Wu, Y. Tian, L. Zhang, X. Xiang, and X. Zhang, A sparsity knowledge | ||
% transfer-based evolutionary algorithm for large-scale multitasking multi- | ||
% objective optimization, IEEE Transactions on Evolutionary Computation, | ||
% 2024. | ||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2024 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
methods | ||
function main(Algorithm,Problem) | ||
%% Population initialization | ||
TaskNum = size(Problem.SubM,2); | ||
EachN = ceil(Problem.N/TaskNum); | ||
[~, Maxid] = max(Problem.SubD); | ||
Buquan = zeros(1,TaskNum); | ||
for i = 1 : TaskNum | ||
Buquan(i) = Problem.SubD(Maxid)-Problem.SubD(i); | ||
end | ||
% Calculate the fitness of each decision variable | ||
REAL = all(Problem.encoding~=4); | ||
TDec = cell(1+4*REAL,TaskNum); | ||
TMask = cell(1+4*REAL,TaskNum); | ||
TempPop = cell(1+4*REAL,TaskNum); | ||
Fitness = cell(1,TaskNum); | ||
for j = 1:TaskNum | ||
Fitness{j} = zeros(1,Problem.SubD(j)); | ||
end | ||
FitnessDec = cell(1,TaskNum); | ||
for j = 1 : TaskNum | ||
FitnessDec{j} = zeros(1+4*REAL,Problem.SubD(j)); | ||
end | ||
for i = 1 : 1+4*REAL | ||
for j = 1 : TaskNum | ||
if REAL | ||
Dec{i,j} = unifrnd(repmat(Problem.lower(1:Problem.SubD(j))+(Problem.upper(1:Problem.SubD(j))-Problem.lower(1:Problem.SubD(j)))*((i-1)/(1+4*REAL)),Problem.SubD(j),1),... | ||
repmat(Problem.lower(1:Problem.SubD(j))+(Problem.upper(1:Problem.SubD(j))-Problem.lower(1:Problem.SubD(j)))*((i)/(1+4*REAL)),Problem.SubD(j),1)); | ||
else | ||
Dec{i,j} = ones(Problem.SubD(j),Problem.SubD(j)); | ||
end | ||
Mask{i,j} = eye(Problem.SubD(j)); | ||
Skill{i,j} = j*ones(Problem.SubD(j),1); | ||
Solution{i,j} = [Dec{i,j}.*Mask{i,j},zeros(size(Dec{i,j},1),Buquan(j)),Skill{i,j}]; | ||
Initpop{i,j} = Problem.Evaluation(Solution{i,j}); | ||
TDec{i,j} = [TDec{i,j};Dec{i,j}]; | ||
TMask{i,j} = [TMask{i,j};Mask{i,j}]; | ||
TempPop{i,j} = [TempPop{i,j},Initpop{i,j}]; | ||
Fitness{j} = Fitness{j} + NDSort([Initpop{i,j}.objs,Initpop{i,j}.cons],inf); | ||
FitnessDec{j}(i,:) = NDSort([Initpop{i,j}.objs,Initpop{i,j}.cons],inf); | ||
end | ||
end | ||
FitnessPop = TempPop; | ||
for j = 1 : TaskNum | ||
for i = 1 : Problem.SubD(j) | ||
pDecIndex{j,i} = find(FitnessDec{j}(:,i)==min(FitnessDec{j}(:,i))); | ||
end | ||
end | ||
% Generate initial population | ||
Dec = cell(1,TaskNum); | ||
Mask = cell(1,TaskNum); | ||
Pop = {}; | ||
SubPopulation = {}; | ||
FrontNo = {}; | ||
CrowdDis = {}; | ||
Skill = {}; | ||
Solution = {}; | ||
for i = 1 : TaskNum | ||
if REAL | ||
for n = 1 : EachN | ||
for d = 1 : Problem.SubD(i) | ||
pDecRandIndex = pDecIndex{i,d}(randi(size(pDecIndex{i,d},1))); | ||
Dec{i}(n,d) = unifrnd(Problem.lower(d)+(Problem.upper(d)-Problem.lower(d))*((pDecRandIndex-1)/(1+4*REAL)),... | ||
Problem.lower(d)+(Problem.upper(d)-Problem.lower(d))*((pDecRandIndex)/(1+4*REAL))); | ||
end | ||
end | ||
else | ||
Dec{i} = ones(EachN,Problem.SubD(i)); | ||
end | ||
Mask{i} = zeros(EachN,Problem.SubD(i)); | ||
SamMask = Mask{i}(1:5,:); | ||
[~,rank1] = sort(Fitness{i}); | ||
index = round([0.1,0.2,0.3,0.4,0.5]*Problem.SubD(i)); | ||
for j = 1 : 5 | ||
SamMask(j,rank1(1:index(j))) = 1; | ||
end | ||
Mask{i}(1:5,:) = SamMask; | ||
for j = 6 : EachN | ||
Mask{i}(j,TournamentSelection(2,ceil(rand*Problem.SubD(i)),Fitness{i})) = 1; | ||
end | ||
Skill{i} = i*ones(EachN,1); | ||
Solution{i} = [Dec{i}.*Mask{i},zeros(size(Dec{i},1),Buquan(i)),Skill{i}]; | ||
Pop{i} = Problem.Evaluation(Solution{i}); | ||
end | ||
% Generate initthetamid | ||
initthetamid = zeros(1,TaskNum); | ||
for i = 1 : TaskNum | ||
[~,~,~,TFrontNo,~] = SparseEA_ESnouni([Pop{i},[TempPop{:,i}]],[Dec{i};vertcat(TDec{:,i})],[Mask{i};vertcat(TMask{:,i})],length([Pop{i},[TempPop{:,i}]])); | ||
[SubPopulation{i},Dec{i},Mask{i},FrontNo{i},CrowdDis{i}] = SparseEA_EnvironmentalSelection([Pop{i},[TempPop{:,i}]],[Dec{i};vertcat(TDec{:,i})],[Mask{i};vertcat(TMask{:,i})],EachN); | ||
if size(find(TFrontNo(1:5)==1),2)>0 | ||
initthetamid(i) = mean(index(TFrontNo(1:5)==1)); | ||
else | ||
Theta = sum(Mask{i}(FrontNo{i} ==1,:),2)'; | ||
initthetamid(i) = mean(Theta); | ||
end | ||
end | ||
|
||
%% Optimization | ||
NumTransUp = floor(EachN/10)*ones(1,TaskNum); | ||
ALLTthetamid = []; | ||
ALLTthetamid(1,:) = initthetamid; | ||
[SourceId,TF1] = SourceTaskrand(Problem,SubPopulation,Dec,Mask,FrontNo,CrowdDis,EachN,Fitness,FitnessDec,pDecIndex,Buquan); | ||
while Algorithm.NotTerminated([SubPopulation{:}]) | ||
for i = 1 : TaskNum | ||
[SubPopulation{i},Dec{i},Mask{i},FrontNo{i},CrowdDis{i}] = OP_SparseEA(i,EachN,Problem,FrontNo{i},CrowdDis{i},Dec{i},Mask{i},Fitness{i},SubPopulation{i},Buquan(i),REAL); | ||
end | ||
[SubPopulation,Dec,Mask,FrontNo,CrowdDis,NumTransUp,ALLTthetamid] = Op_Transnodec(Problem,SubPopulation,Dec,Mask,FrontNo,CrowdDis,EachN,TF1,FitnessDec,pDecIndex,FitnessPop,SourceId,Buquan,NumTransUp,ALLTthetamid); | ||
[SourceId,TF1] = SourceTaskrand(Problem,SubPopulation,Dec,Mask,FrontNo,CrowdDis,EachN,Fitness,FitnessDec,pDecIndex,Buquan); | ||
end | ||
end | ||
end | ||
end |
47 changes: 47 additions & 0 deletions
47
PlatEMO/Algorithms/Multi-objective optimization/EMOSKT/MOEAPSL_EnvironmentalSelection.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
function [Population,Dec,Mask,FrontNo,CrowdDis,sRatio] = MOEAPSL_EnvironmentalSelection(Population,Dec,Mask,N,num) | ||
% The environmental selection of MOEA/PSL | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2024 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
%% Delete duplicated solutions | ||
[~,uni] = unique(Population.objs,'rows'); | ||
if isscalar(uni) | ||
[~,uni] = unique(Population.decs,'rows'); | ||
end | ||
Population = Population(uni); | ||
Dec = Dec(uni,:); | ||
Mask = Mask(uni,:); | ||
N = min(N,length(Population)); | ||
|
||
%% Non-dominated sorting | ||
[FrontNo,MaxFNo] = NDSort(Population.objs,Population.cons,N); | ||
Next = FrontNo < MaxFNo; | ||
|
||
%% Calculate the crowding distance of each solution | ||
CrowdDis = CrowdingDistance(Population.objs,FrontNo); | ||
|
||
%% Select the solutions in the last front based on their crowding distances | ||
Last = find(FrontNo==MaxFNo); | ||
[~,Rank] = sort(CrowdDis(Last),'descend'); | ||
Next(Last(Rank(1:N-sum(Next)))) = true; | ||
|
||
%% Calculate the ratio of successful offsprings | ||
s1 = sum(Next(N+1:end)); | ||
s2 = num; | ||
sRatio = (s1+1e-6)./(s2+1e-6); | ||
sRatio = min(max(sRatio,0),1); | ||
|
||
%% Population for next generation | ||
Population = Population(Next); | ||
FrontNo = FrontNo(Next); | ||
CrowdDis = CrowdDis(Next); | ||
Dec = Dec(Next,:); | ||
Mask = Mask(Next,:); | ||
end |
118 changes: 118 additions & 0 deletions
118
PlatEMO/Algorithms/Multi-objective optimization/EMOSKT/OP_SparseEA.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
function [Population,Dec,Mask,FrontNo,CrowdDis]=OP_SparseEA(Taskid,EachN,Problem,FrontNo,CrowdDis,Dec,Mask,Fitness,Population,Buquan,REAL) | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2024 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
MatingPool = TournamentSelection(2,2*EachN,FrontNo,-CrowdDis); | ||
[OffDec,OffMask] = Operator(Problem,Dec(MatingPool,:),Mask(MatingPool,:),Fitness,Taskid,REAL); | ||
|
||
Skill = Taskid*ones(size(OffDec,1),1); | ||
Solution = [OffDec.*OffMask,zeros(size(OffDec,1),Buquan),Skill]; | ||
Offspring = Problem.Evaluation(Solution); | ||
|
||
[Population,Dec,Mask,FrontNo,CrowdDis] = SparseEA_EnvironmentalSelection([Population,Offspring],[Dec;OffDec],[Mask;OffMask],EachN); | ||
end | ||
|
||
function [OffDec,OffMask] = Operator(Problem,ParentDec,ParentMask,Fitness,Taskid,REAL) | ||
%% Parameter setting | ||
[N,D] = size(ParentDec); | ||
Parent1Mask = ParentMask(1:N/2,:); | ||
Parent2Mask = ParentMask(N/2+1:end,:); | ||
|
||
%% Crossover for mask | ||
OffMask = Parent1Mask; | ||
for i = 1 : N/2 | ||
if rand < 0.5 | ||
index = find(Parent1Mask(i,:)&~Parent2Mask(i,:)); | ||
index = index(TS(-Fitness(index))); | ||
OffMask(i,index) = 0; | ||
else | ||
index = find(~Parent1Mask(i,:)&Parent2Mask(i,:)); | ||
index = index(TS(Fitness(index))); | ||
OffMask(i,index) = Parent2Mask(i,index); | ||
end | ||
end | ||
|
||
%% Mutation for mask | ||
for i = 1 : N/2 | ||
if rand < 0.5 | ||
index = find(OffMask(i,:)); | ||
index = index(TS(-Fitness(index))); | ||
OffMask(i,index) = 0; | ||
else | ||
index = find(~OffMask(i,:)); | ||
index = index(TS(Fitness(index))); | ||
OffMask(i,index) = 1; | ||
end | ||
end | ||
|
||
%% Crossover and mutation for dec | ||
if REAL | ||
OffDec = OperatorGAhalf(Problem,ParentDec,Taskid); | ||
OffDec(:,Problem.encoding==4) = 1; | ||
else | ||
OffDec = ones(N/2,D); | ||
end | ||
|
||
end | ||
|
||
function index = TS(Fitness) | ||
% Binary tournament selection | ||
|
||
if isempty(Fitness) | ||
index = []; | ||
else | ||
index = TournamentSelection(2,1,Fitness); | ||
end | ||
end | ||
|
||
function Offspring = OperatorGAhalf(Problem,Parent,Taskid) | ||
[proC,disC,proM,disM] = deal(1,20,1,20); | ||
|
||
if isa(Parent(1),'SOLUTION') | ||
evaluated = true; | ||
Parent = Parent.decs; | ||
else | ||
evaluated = false; | ||
end | ||
Parent1 = Parent(1:floor(end/2),:); | ||
Parent2 = Parent(floor(end/2)+1:floor(end/2)*2,:); | ||
Offspring = GAreal(Parent1,Parent2,Problem.lower(1:Problem.SubD(Taskid)),Problem.upper(1:Problem.SubD(Taskid)),proC,disC,proM,disM); | ||
if evaluated | ||
Offspring = Problem.Evaluation(Offspring); | ||
end | ||
end | ||
|
||
function Offspring = GAreal(Parent1,Parent2,lower,upper,proC,disC,proM,disM) | ||
% Genetic operators for real and integer variables | ||
|
||
%% Simulated binary crossover | ||
[N,D] = size(Parent1); | ||
beta = zeros(N,D); | ||
mu = rand(N,D); | ||
beta(mu<=0.5) = (2*mu(mu<=0.5)).^(1/(disC+1)); | ||
beta(mu>0.5) = (2-2*mu(mu>0.5)).^(-1/(disC+1)); | ||
beta = beta.*(-1).^randi([0,1],N,D); | ||
beta(rand(N,D)<0.5) = 1; | ||
beta(repmat(rand(N,1)>proC,1,D)) = 1; | ||
Offspring = (Parent1+Parent2)/2+beta.*(Parent1-Parent2)/2; | ||
|
||
%% Polynomial mutation | ||
Lower = repmat(lower,N,1); | ||
Upper = repmat(upper,N,1); | ||
Site = rand(N,D) < proM/D; | ||
mu = rand(N,D); | ||
temp = Site & mu<=0.5; | ||
Offspring = min(max(Offspring,Lower),Upper); | ||
Offspring(temp) = Offspring(temp)+(Upper(temp)-Lower(temp)).*((2.*mu(temp)+(1-2.*mu(temp)).*... | ||
(1-(Offspring(temp)-Lower(temp))./(Upper(temp)-Lower(temp))).^(disM+1)).^(1/(disM+1))-1); | ||
temp = Site & mu>0.5; | ||
Offspring(temp) = Offspring(temp)+(Upper(temp)-Lower(temp)).*(1-(2.*(1-mu(temp))+2.*(mu(temp)-0.5).*... | ||
(1-(Upper(temp)-Offspring(temp))./(Upper(temp)-Lower(temp))).^(disM+1)).^(1/(disM+1))); | ||
end |
Oops, something went wrong.