-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
66a9d8d
commit 31666f7
Showing
20 changed files
with
1,061 additions
and
187 deletions.
There are no files selected for viewing
72 changes: 72 additions & 0 deletions
72
configs/detection/tienet/base_detector/atss_r50_fpn_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
_base_ = [ | ||
'../../_base_/datasets/urpc2020/urpc2020-validation_coco_detection.py', | ||
'../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='ATSS', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=True, | ||
style='pytorch', | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', | ||
num_outs=5), | ||
bbox_head=dict( | ||
type='ATSSHead', | ||
num_classes=4, | ||
in_channels=256, | ||
stacked_convs=4, | ||
feat_channels=256, | ||
anchor_generator=dict( | ||
type='AnchorGenerator', | ||
ratios=[1.0], | ||
octave_base_scale=8, | ||
scales_per_octave=1, | ||
strides=[8, 16, 32, 64, 128]), | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[0.1, 0.1, 0.2, 0.2]), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), | ||
loss_centerness=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), | ||
# training and testing settings | ||
train_cfg=dict( | ||
assigner=dict(type='ATSSAssigner', topk=9), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.6), | ||
max_per_img=100)) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) |
4 changes: 2 additions & 2 deletions
4
...d_air/faster-rcnn_r50_fpn_1x_urpc-coco.py → ...ector/faster-rcnn_r50_fpn_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
77 changes: 77 additions & 0 deletions
77
configs/detection/tienet/base_detector/fcos_r50-caffe_fpn_gn-head_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
_base_ = [ | ||
'../../_base_/datasets/urpc2020/urpc2020-validation_coco_detection.py', | ||
'../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='FCOS', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[102.9801, 115.9465, 122.7717], | ||
std=[1.0, 1.0, 1.0], | ||
bgr_to_rgb=False, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=False), | ||
norm_eval=True, | ||
style='caffe', | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint='open-mmlab://detectron/resnet50_caffe')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', # use P5 | ||
num_outs=5, | ||
relu_before_extra_convs=True), | ||
bbox_head=dict( | ||
type='FCOSHead', | ||
num_classes=4, | ||
in_channels=256, | ||
stacked_convs=4, | ||
feat_channels=256, | ||
strides=[8, 16, 32, 64, 128], | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='IoULoss', loss_weight=1.0), | ||
loss_centerness=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), | ||
# testing settings | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.5), | ||
max_per_img=100)) | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, | ||
end=1000), | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=12, | ||
by_epoch=True, | ||
milestones=[8, 11], | ||
gamma=0.1) | ||
] | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict(lr=0.01), | ||
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), | ||
clip_grad=dict(max_norm=35, norm_type=2)) # loss may NaN without clip_grad |
93 changes: 93 additions & 0 deletions
93
configs/detection/tienet/base_detector/paa_r50_fpn_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
_base_ = [ | ||
'../../_base_/datasets/urpc2020/urpc2020-validation_coco_detection.py', | ||
'../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='PAA', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=True, | ||
style='pytorch', | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', | ||
num_outs=5), | ||
bbox_head=dict( | ||
type='PAAHead', | ||
reg_decoded_bbox=True, | ||
score_voting=True, | ||
topk=9, | ||
num_classes=5, | ||
in_channels=256, | ||
stacked_convs=4, | ||
feat_channels=256, | ||
anchor_generator=dict( | ||
type='AnchorGenerator', | ||
ratios=[1.0], | ||
octave_base_scale=8, | ||
scales_per_octave=1, | ||
strides=[8, 16, 32, 64, 128]), | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[0.1, 0.1, 0.2, 0.2]), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='GIoULoss', loss_weight=1.3), | ||
loss_centerness=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), | ||
# training and testing settings | ||
train_cfg=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.1, | ||
neg_iou_thr=0.1, | ||
min_pos_iou=0, | ||
ignore_iof_thr=-1), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.6), | ||
max_per_img=100)) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=12, | ||
by_epoch=True, | ||
milestones=[8, 11], | ||
gamma=0.1) | ||
] |
81 changes: 81 additions & 0 deletions
81
configs/detection/tienet/base_detector/tood_r50_fpn_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
_base_ = [ | ||
'../../_base_/datasets/urpc2020/urpc2020-validation_coco_detection.py', | ||
'../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='TOOD', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=True, | ||
style='pytorch', | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', | ||
num_outs=5), | ||
bbox_head=dict( | ||
type='TOODHead', | ||
num_classes=4, | ||
in_channels=256, | ||
stacked_convs=6, | ||
feat_channels=256, | ||
anchor_type='anchor_free', | ||
anchor_generator=dict( | ||
type='AnchorGenerator', | ||
ratios=[1.0], | ||
octave_base_scale=8, | ||
scales_per_octave=1, | ||
strides=[8, 16, 32, 64, 128]), | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[0.1, 0.1, 0.2, 0.2]), | ||
initial_loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
activated=True, # use probability instead of logit as input | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_cls=dict( | ||
type='QualityFocalLoss', | ||
use_sigmoid=True, | ||
activated=True, # use probability instead of logit as input | ||
beta=2.0, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)), | ||
train_cfg=dict( | ||
initial_epoch=4, | ||
initial_assigner=dict(type='ATSSAssigner', topk=9), | ||
assigner=dict(type='TaskAlignedAssigner', topk=13), | ||
alpha=1, | ||
beta=6, | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.6), | ||
max_per_img=100)) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
3 changes: 3 additions & 0 deletions
3
configs/detection/tienet/tienet_faster-rcnn_r50_fpn_1x_4xbs4_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
_base_ = ['./tienet_faster-rcnn_r50_fpn_1x_urpc-coco.py'] | ||
|
||
train_dataloader = dict(batch_size=4, num_workers=4) |
35 changes: 35 additions & 0 deletions
35
configs/detection/tienet/tienet_faster-rcnn_r50_fpn_1x_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
# default scope is mmdet | ||
_base_ = [ | ||
'./base_editor/tienet_enhance_model.py', | ||
'./base_detector/faster-rcnn_r50_fpn_1x_urpc-coco.py' | ||
] | ||
|
||
model = dict( | ||
_delete_=True, | ||
type='lqit.DetectorWithEnhanceModel', | ||
detector={{_base_.model}}, | ||
enhance_model={{_base_.enhance_model}}, | ||
train_mode='enhance', | ||
pred_mode='enhance', | ||
detach_enhance_img=False) | ||
|
||
optim_wrapper = dict( | ||
type='OptimWrapper', | ||
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001), | ||
clip_grad=dict(max_norm=35, norm_type=2)) | ||
|
||
# dataset settings | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='Resize', scale=(1333, 800), keep_ratio=True), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='lqit.SetInputImageAsGT'), | ||
dict(type='lqit.PackInputs') | ||
] | ||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | ||
|
||
model_wrapper_cfg = dict( | ||
type='lqit.SelfEnhanceModelDDP', | ||
broadcast_buffers=False, | ||
find_unused_parameters=False) |
3 changes: 3 additions & 0 deletions
3
configs/detection/tienet/tienet_retinanet_r50_fpn_1x_4xbs4_urpc-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
_base_ = ['./tienet_retinanet_r50_fpn_1x_urpc-coco.py'] | ||
|
||
train_dataloader = dict(batch_size=4, num_workers=4) |
Oops, something went wrong.