-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
debacb1
commit 0d0ee77
Showing
9 changed files
with
730 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
PARTITION=$1 | ||
GPUS=${GPUS:-8} | ||
GPUS_PER_NODE=${GPUS_PER_NODE:-8} | ||
CPUS_PER_TASK=${CPUS_PER_TASK:-5} | ||
SRUN_ARGS=${SRUN_ARGS:-""} | ||
|
||
log_dir="work_dirs/slurm_logs" | ||
mkdir -p "$log_dir" | ||
|
||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-atss_r50_1x configs/detection/rtts_dataset/atss_r50_fpn_1x_rtts-coco.py work_dirs/rtts/atss_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/atss_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_atss_r50_fpn_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-cascade_r50_1x configs/detection/rtts_dataset/cascade-rcnn_r50_fpn_1x_rtts-coco.py work_dirs/rtts/cascade-rcnn_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/cascade-rcnn_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_cascade-rcnn_r50_fpn_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-faster_r50_1x configs/detection/rtts_dataset/faster-rcnn_r50_fpn_1x_rtts-coco.py work_dirs/rtts/faster-rcnn_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/faster-rcnn_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_faster-rcnn_r50_fpn_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-fcos_r50_1x configs/detection/rtts_dataset/fcos_r50-caffe_fpn_gn-head_1x_rtts-coco.py work_dirs/rtts/fcos_r50-caffe_fpn_gn-head_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/fcos_r50-caffe_fpn_gn-head_1x_rtts-coco/eval_result > "$log_dir/rtts_fcos_r50-caffe_fpn_gn-head_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-paa_r50_1x configs/detection/rtts_dataset/paa_r50_fpn_1x_rtts-coco.py work_dirs/rtts/paa_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/paa_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_paa_r50_fpn_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-retinanet_r50_1x configs/detection/rtts_dataset/retinanet_r50_fpn_1x_rtts-coco.py work_dirs/rtts/retinanet_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/retinanet_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_retinanet_r50_fpn_1x_rtts-coco.log" & | ||
SRUN_ARGS=${SRUN_ARGS} GPUS=$GPUS GPUS_PER_NODE=$GPUS_PER_NODE CPUS_PER_TASK=$CPUS_PRE_TASK ./tools/slurm_train.sh llmit2 rtts-tood_r50_1x configs/detection/rtts_dataset/tood_r50_fpn_1x_rtts-coco.py work_dirs/rtts/tood_r50_fpn_1x_rtts-coco --cfg-options default_hooks.checkpoint.max_keep_ckpts=1 randomness.seed=0 val_evaluator.outfile_prefix=work_dirs/rtts/tood_r50_fpn_1x_rtts-coco/eval_result > "$log_dir/rtts_tood_r50_fpn_1x_rtts-coco.log" & |
Empty file.
86 changes: 86 additions & 0 deletions
86
configs/detection/rtts_dataset/atss_r50_fpn_1x_rtts-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
_base_ = [ | ||
'../_base_/datasets/rtts_coco.py', '../_base_/schedules/schedule_1x.py', | ||
'../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='ATSS', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=True, | ||
style='pytorch', | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', | ||
num_outs=5), | ||
bbox_head=dict( | ||
type='ATSSHead', | ||
num_classes=5, | ||
in_channels=256, | ||
stacked_convs=4, | ||
feat_channels=256, | ||
anchor_generator=dict( | ||
type='AnchorGenerator', | ||
ratios=[1.0], | ||
octave_base_scale=8, | ||
scales_per_octave=1, | ||
strides=[8, 16, 32, 64, 128]), | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[0.1, 0.1, 0.2, 0.2]), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), | ||
loss_centerness=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), | ||
# training and testing settings | ||
train_cfg=dict( | ||
assigner=dict(type='ATSSAssigner', topk=9), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.6), | ||
max_per_img=100)) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) | ||
|
||
# add WandbVisBackend | ||
# vis_backends = [ | ||
# dict(type='LocalVisBackend'), | ||
# dict(type='WandbVisBackend', | ||
# init_kwargs=dict( | ||
# project='rtts_detection', | ||
# name='atss_r50_fpn_1x_rtts', | ||
# entity='lqit', | ||
# ) | ||
# ) | ||
# ] | ||
# visualizer = dict( | ||
# type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
204 changes: 204 additions & 0 deletions
204
configs/detection/rtts_dataset/cascade-rcnn_r50_fpn_1x_rtts-coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
_base_ = [ | ||
'../_base_/datasets/rtts_coco.py', '../_base_/schedules/schedule_1x.py', | ||
'../_base_/default_runtime.py' | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
type='CascadeRCNN', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True, | ||
pad_size_divisor=32), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=True, | ||
style='pytorch', | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=5), | ||
rpn_head=dict( | ||
type='RPNHead', | ||
in_channels=256, | ||
feat_channels=256, | ||
anchor_generator=dict( | ||
type='AnchorGenerator', | ||
scales=[8], | ||
ratios=[0.5, 1.0, 2.0], | ||
strides=[4, 8, 16, 32, 64]), | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[1.0, 1.0, 1.0, 1.0]), | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), | ||
roi_head=dict( | ||
type='CascadeRoIHead', | ||
num_stages=3, | ||
stage_loss_weights=[1, 0.5, 0.25], | ||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), | ||
out_channels=256, | ||
featmap_strides=[4, 8, 16, 32]), | ||
bbox_head=[ | ||
dict( | ||
type='Shared2FCBBoxHead', | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=5, | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.1, 0.1, 0.2, 0.2]), | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', | ||
use_sigmoid=False, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, | ||
loss_weight=1.0)), | ||
dict( | ||
type='Shared2FCBBoxHead', | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=5, | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.05, 0.05, 0.1, 0.1]), | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', | ||
use_sigmoid=False, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, | ||
loss_weight=1.0)), | ||
dict( | ||
type='Shared2FCBBoxHead', | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=5, | ||
bbox_coder=dict( | ||
type='DeltaXYWHBBoxCoder', | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.033, 0.033, 0.067, 0.067]), | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', | ||
use_sigmoid=False, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) | ||
]), | ||
# model training and testing settings | ||
train_cfg=dict( | ||
rpn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.3, | ||
min_pos_iou=0.3, | ||
match_low_quality=True, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=256, | ||
pos_fraction=0.5, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=False), | ||
allowed_border=0, | ||
pos_weight=-1, | ||
debug=False), | ||
rpn_proposal=dict( | ||
nms_pre=2000, | ||
max_per_img=2000, | ||
nms=dict(type='nms', iou_threshold=0.7), | ||
min_bbox_size=0), | ||
rcnn=[ | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.5, | ||
min_pos_iou=0.5, | ||
match_low_quality=False, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False), | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.6, | ||
neg_iou_thr=0.6, | ||
min_pos_iou=0.6, | ||
match_low_quality=False, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False), | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.7, | ||
min_pos_iou=0.7, | ||
match_low_quality=False, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False) | ||
]), | ||
test_cfg=dict( | ||
rpn=dict( | ||
nms_pre=1000, | ||
max_per_img=1000, | ||
nms=dict(type='nms', iou_threshold=0.7), | ||
min_bbox_size=0), | ||
rcnn=dict( | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.5), | ||
max_per_img=100))) | ||
|
||
# add WandbVisBackend | ||
# vis_backends = [ | ||
# dict(type='LocalVisBackend'), | ||
# dict(type='WandbVisBackend', | ||
# init_kwargs=dict( | ||
# project='rtts_detection', | ||
# name='cascade-rcnn_r50_fpn_1x_rtts', | ||
# entity='lqit', | ||
# ) | ||
# ) | ||
# ] | ||
# visualizer = dict( | ||
# type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
Oops, something went wrong.