Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add python sdk sample #13338

Merged
merged 8 commits into from
Sep 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions sdk/anomalydetector/azure-ai-anomalydetector/MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
recursive-include tests *.py *.yaml
recursive-include samples *.py *.md
include *.md
include azure/__init__.py
include azure/ai/__init__.py
Expand Down
59 changes: 59 additions & 0 deletions sdk/anomalydetector/azure-ai-anomalydetector/samples/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
---
page_type: sample
languages:
- python
products:
- azure
- azure-cognitive-services
- azure-anomaly-detector
urlFragment: anomalydetector-samples
---

# Samples for Azure Anomaly Detector client library for Python

These code samples show common scenario operations with the Anomaly Detector client library.

These sample programs show common scenarios for the Anomaly Detector client's offerings.

|**File Name**|**Description**|
|----------------|-------------|
|[sample_detect_entire_series_anomaly.py][sample_detect_entire_series_anomaly] |Detecting anomalies in the entire time series.|
|[sample_detect_last_point_anomaly.py][sample_detect_last_point_anomaly] |Detecting the anomaly status of the latest data point.|
|[sample_detect_change_point.py][sample_detect_change_point] |Detecting change points in the entire time series.|

## Prerequisites
* Python 2.7 or 3.5 or higher is required to use this package.
* The Pandas data analysis library.
* You must have an [Azure subscription][azure_subscription] and an
[Azure Anomaly Detector account][azure_anomaly_detector_account] to run these samples.

## Setup

1. Install the Azure Anomaly Detector client library for Python with [pip][pip]:

```bash
pip install azure-ai-anomalydetector
```

2. Clone or download this sample repository
3. Open the sample folder in Visual Studio Code or your IDE of choice.

## Running the samples

1. Open a terminal window and `cd` to the directory that the samples are saved in.
2. Set the environment variables specified in the sample file you wish to run.
3. Follow the usage described in the file, e.g. `python sample_detect_entire_series_anomaly.py`

## Next steps

Check out the [API reference documentation][python-fr-ref-docs] to learn more about
what you can do with the Azure Anomaly Detector client library.

[pip]: https://pypi.org/project/pip/
[azure_subscription]: https://azure.microsoft.com/free/cognitive-services
[azure_anomaly_detector_account]: https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesAnomalyDetector
[python-fr-ref-docs]: https://azuresdkdocs.blob.core.windows.net/$web/python/azure-cognitiveservices-anomalydetector/0.3.0/index.html

[sample_detect_entire_series_anomaly]: ./sample_detect_entire_series_anomaly.py
[sample_detect_last_point_anomaly]: ./sample_detect_last_point_anomaly.py
[sample_detect_change_point]: ./sample_detect_change_point.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
2018-03-01T00:00:00Z,32858923
2018-03-02T00:00:00Z,29615278
2018-03-03T00:00:00Z,22839355
2018-03-04T00:00:00Z,25948736
2018-03-05T00:00:00Z,34139159
2018-03-06T00:00:00Z,33843985
2018-03-07T00:00:00Z,33637661
2018-03-08T00:00:00Z,32627350
2018-03-09T00:00:00Z,29881076
2018-03-10T00:00:00Z,22681575
2018-03-11T00:00:00Z,24629393
2018-03-12T00:00:00Z,34010679
2018-03-13T00:00:00Z,33893888
2018-03-14T00:00:00Z,33760076
2018-03-15T00:00:00Z,33093515
2018-03-16T00:00:00Z,29945555
2018-03-17T00:00:00Z,22676212
2018-03-18T00:00:00Z,25262514
2018-03-19T00:00:00Z,33631649
2018-03-20T00:00:00Z,34468310
2018-03-21T00:00:00Z,34212281
2018-03-22T00:00:00Z,38144434
2018-03-23T00:00:00Z,34662949
2018-03-24T00:00:00Z,24623684
2018-03-25T00:00:00Z,26530491
2018-03-26T00:00:00Z,35445003
2018-03-27T00:00:00Z,34250789
2018-03-28T00:00:00Z,33423012
2018-03-29T00:00:00Z,30744783
2018-03-30T00:00:00Z,25825128
2018-03-31T00:00:00Z,21244209
2018-04-01T00:00:00Z,22576956
2018-04-02T00:00:00Z,31957221
2018-04-03T00:00:00Z,33841228
2018-04-04T00:00:00Z,33554483
2018-04-05T00:00:00Z,32383350
2018-04-06T00:00:00Z,29494850
2018-04-07T00:00:00Z,22815534
2018-04-08T00:00:00Z,25557267
2018-04-09T00:00:00Z,34858252
2018-04-10T00:00:00Z,34750597
2018-04-11T00:00:00Z,34717956
2018-04-12T00:00:00Z,34132534
2018-04-13T00:00:00Z,30762236
2018-04-14T00:00:00Z,22504059
2018-04-15T00:00:00Z,26149060
2018-04-16T00:00:00Z,35250105
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""
FILE: sample_detect_change_point.py

DESCRIPTION:
This sample demonstrates how to detect entire series change points.

Prerequisites:
* The Anomaly Detector client library for Python
* A .csv file containing a time-series data set with
UTC-timestamp and numerical values pairings.
Example data is included in this repo.

USAGE:
python sample_detect_change_point.py

Set the environment variables with your own values before running the sample:
1) ANOMALY_DETECTOR_KEY - your source Form Anomaly Detector API key.
2) ANOMALY_DETECTOR_ENDPOINT - the endpoint to your source Anomaly Detector resource.
"""

import os
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.ai.anomalydetector.models import DetectRequest, TimeSeriesPoint, TimeGranularity, \
AnomalyDetectorError
from azure.core.credentials import AzureKeyCredential
import pandas as pd


class DetectChangePointsSample(object):

def detect_change_point(self):
SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("./sample_data", "request-data.csv")

# Create an Anomaly Detector client

# <client>
client = AnomalyDetectorClient(AzureKeyCredential(SUBSCRIPTION_KEY), ANOMALY_DETECTOR_ENDPOINT)
# </client>

# Load in the time series data file

# <loadDataFile>
series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding='utf-8', parse_dates=[0])
for index, row in data_file.iterrows():
series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))
# </loadDataFile>

# Create a request from the data file

# <request>
request = DetectRequest(series=series, granularity=TimeGranularity.daily)
# </request>

# detect change points throughout the entire time series

# <detectChangePoint>
print('Detecting change points in the entire time series.')

try:
response = client.detect_change_point(request)
except AnomalyDetectorError as e:
print('Error code: {}'.format(e.error.code), 'Error message: {}'.format(e.error.message))
except Exception as e:
lmazuel marked this conversation as resolved.
Show resolved Hide resolved
print(e)

if any(response.is_change_point):
print('An change point was detected at index:')
for i, value in enumerate(response.is_change_point):
if value:
print(i)
else:
print('No change point were detected in the time series.')
# </detectChangePoint>


if __name__ == '__main__':
sample = DetectChangePointsSample()
sample.detect_change_point()
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""
FILE: sample_detect_entire_series_anomaly.py

DESCRIPTION:
This sample demonstrates how to detect entire series anomalies.

Prerequisites:
* The Anomaly Detector client library for Python
* A .csv file containing a time-series data set with
UTC-timestamp and numerical values pairings.
Example data is included in this repo.

USAGE:
python sample_detect_entire_series_anomaly.py

Set the environment variables with your own values before running the sample:
1) ANOMALY_DETECTOR_KEY - your source Form Anomaly Detector API key.
2) ANOMALY_DETECTOR_ENDPOINT - the endpoint to your source Anomaly Detector resource.
"""

import os
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.ai.anomalydetector.models import DetectRequest, TimeSeriesPoint, TimeGranularity, \
AnomalyDetectorError
from azure.core.credentials import AzureKeyCredential
import pandas as pd


class DetectEntireAnomalySample(object):

def detect_entire_series(self):
SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("./sample_data", "request-data.csv")

# Create an Anomaly Detector client

# <client>
client = AnomalyDetectorClient(AzureKeyCredential(SUBSCRIPTION_KEY), ANOMALY_DETECTOR_ENDPOINT)
# </client>

# Load in the time series data file

# <loadDataFile>
series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding='utf-8', parse_dates=[0])
for index, row in data_file.iterrows():
series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))
# </loadDataFile>

# Create a request from the data file

# <request>
request = DetectRequest(series=series, granularity=TimeGranularity.daily)
# </request>

# detect anomalies throughout the entire time series, as a batch

# <detectAnomaliesBatch>
print('Detecting anomalies in the entire time series.')

try:
response = client.detect_entire_series(request)
except AnomalyDetectorError as e:
print('Error code: {}'.format(e.error.code), 'Error message: {}'.format(e.error.message))
except Exception as e:
print(e)

if any(response.is_anomaly):
print('An anomaly was detected at index:')
for i, value in enumerate(response.is_anomaly):
if value:
print(i)
else:
print('No anomalies were detected in the time series.')
# </detectAnomaliesBatch>


if __name__ == '__main__':
sample = DetectEntireAnomalySample()
sample.detect_entire_series()
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""
FILE: sample_detect_last_point_anomaly.py

DESCRIPTION:
This sample demonstrates how to detect last series point whether is anomaly.

Prerequisites:
* The Anomaly Detector client library for Python
* A .csv file containing a time-series data set with
UTC-timestamp and numerical values pairings.
Example data is included in this repo.

USAGE:
python sample_detect_last_point_anomaly.py

Set the environment variables with your own values before running the sample:
1) ANOMALY_DETECTOR_KEY - your source Form Anomaly Detector API key.
2) ANOMALY_DETECTOR_ENDPOINT - the endpoint to your source Anomaly Detector resource.
"""

import os
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.ai.anomalydetector.models import DetectRequest, TimeSeriesPoint, TimeGranularity, \
AnomalyDetectorError
from azure.core.credentials import AzureKeyCredential
import pandas as pd


class DetectLastAnomalySample(object):

def detect_last_point(self):
SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"]
TIME_SERIES_DATA_PATH = os.path.join("./sample_data", "request-data.csv")

# Create an Anomaly Detector client

# <client>
client = AnomalyDetectorClient(AzureKeyCredential(SUBSCRIPTION_KEY), ANOMALY_DETECTOR_ENDPOINT)
# </client>

# Load in the time series data file

# <loadDataFile>
series = []
data_file = pd.read_csv(TIME_SERIES_DATA_PATH, header=None, encoding='utf-8', parse_dates=[0])
for index, row in data_file.iterrows():
series.append(TimeSeriesPoint(timestamp=row[0], value=row[1]))
# </loadDataFile>

# Create a request from the data file

# <request>
request = DetectRequest(series=series, granularity=TimeGranularity.daily)
# </request>

# Detect the anomaly status of the latest data point

# <latestPointDetection>
print('Detecting the anomaly status of the latest data point.')

try:
response = client.detect_last_point(request)
except AnomalyDetectorError as e:
print('Error code: {}'.format(e.error.code), 'Error message: {}'.format(e.error.message))
except Exception as e:
print(e)

if response.is_anomaly:
print('The latest point is detected as anomaly.')
else:
print('The latest point is not detected as anomaly.')
# </latestPointDetection>


if __name__ == '__main__':
sample = DetectLastAnomalySample()
sample.detect_last_point()