This project aims to provide a Prolog specification of individual TensorFlow layers. Most layers are specified assuming statically given weights. Taking these weights as input parameter enables a deterministic computation of outputs for given inputs.
Layer | Comment |
---|---|
Add | |
Average | |
AveragePooling1D | |
AveragePooling2D | |
AveragePooling3D | |
Concatenate | |
Conv1D | |
Conv2D | |
Conv3D | |
Conv2DTranspose | |
Conv3DTranspose | |
Cropping1D | |
Cropping2D | |
Cropping3D | |
Dense | |
DepthwiseConv2D | |
Dot | |
Embedding | |
ELU | |
Flatten | |
GlobalAveragePooling1D | |
GlobalAveragePooling2D | |
GlobalAveragePooling3D | |
GlobalMaxPool1D | |
GlobalMaxPool2D | |
GlobalMaxPool3D | |
GRU | |
InputSpec | |
LayerNormalization | |
LeakyReLU | |
LocallyConnected1D | |
LocallyConnected2D | |
LSTM | |
Maximum | |
MaxPool1D | |
MaxPool2D | |
MaxPool3D | |
Minimum | |
Multiply | |
Permute | |
PReLU | |
ReLU | |
RepeatVector | |
Reshape | |
SeparableConv1D | |
SeparableConv2D | |
SimpleRNN | |
Softmax | |
Subtract | |
ThresholdedReLU | |
UpSampling1D | |
UpSampling2D | |
UpSampling3D | |
ZeroPadding1D | |
ZeroPadding2D | |
ZeroPadding3D |
Layer | Comment |
---|---|
AlphaDropout | |
BatchNormalization | |
ConvLSTM2D | |
Dropout | |
GaussianDropout | |
GaussianNoise | |
Masking | |
SpatialDropout1D | |
SpatialDropout2D | |
SpatialDropout3D | |
TimeDistributed |