Skip to content

Prolog specification of TensorFlow layers

Notifications You must be signed in to change notification settings

AyeshaSadiq7/TensorFlowPrologSpec

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 

Repository files navigation

TensorFlowPrologSpec

This project aims to provide a Prolog specification of individual TensorFlow layers. Most layers are specified assuming statically given weights. Taking these weights as input parameter enables a deterministic computation of outputs for given inputs.

Implemented layers

Layer Comment
Add
Average
AveragePooling1D
AveragePooling2D
AveragePooling3D
Concatenate
Conv1D
Conv2D
Conv3D
Conv2DTranspose
Conv3DTranspose
Cropping1D
Cropping2D
Cropping3D
Dense
DepthwiseConv2D
Dot
Embedding
ELU
Flatten
GlobalAveragePooling1D
GlobalAveragePooling2D
GlobalAveragePooling3D
GlobalMaxPool1D
GlobalMaxPool2D
GlobalMaxPool3D
GRU
InputSpec
LayerNormalization
LeakyReLU
LocallyConnected1D
LocallyConnected2D
LSTM
Maximum
MaxPool1D
MaxPool2D
MaxPool3D
Minimum
Multiply
Permute
PReLU
ReLU
RepeatVector
Reshape
SeparableConv1D
SeparableConv2D
SimpleRNN
Softmax
Subtract
ThresholdedReLU
UpSampling1D
UpSampling2D
UpSampling3D
ZeroPadding1D
ZeroPadding2D
ZeroPadding3D

Layers under development

Layer Comment
AlphaDropout
BatchNormalization
ConvLSTM2D
Dropout
GaussianDropout
GaussianNoise
Masking
SpatialDropout1D
SpatialDropout2D
SpatialDropout3D
TimeDistributed

About

Prolog specification of TensorFlow layers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Prolog 100.0%