Skip to content
This repository has been archived by the owner on Apr 26, 2023. It is now read-only.

Commit

Permalink
Adaptive resizing for masked images
Browse files Browse the repository at this point in the history
Especially in the case of 1080p or higher, if the non-transparent area of the mask image used for the split is small, resizing the entire image to 320x240 will lose the information inside the mask. One idea to prevent this is to adaptively determine the target size according to the number of nonzero elements in the alpha channel of the split image. At least for the L2 norm and histogram, such a change would not affect performance since they only use information about the mask's interior. Masks are not recommended with pHash anyway.
  • Loading branch information
zalgo3 authored and Avasam committed Oct 19, 2022
1 parent 61e001b commit 482bbcb
Show file tree
Hide file tree
Showing 4 changed files with 18 additions and 16 deletions.
9 changes: 2 additions & 7 deletions src/AutoSplit.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import error_messages
import user_profile
from AutoControlledWorker import AutoControlledWorker
from AutoSplitImage import COMPARISON_RESIZE, START_KEYWORD, AutoSplitImage, ImageType
from AutoSplitImage import START_KEYWORD, AutoSplitImage, ImageType
from capture_method import CaptureMethodBase, CaptureMethodEnum
from gen import about, design, settings, update_checker
from hotkeys import HOTKEYS, after_setting_hotkey, send_command
Expand Down Expand Up @@ -771,12 +771,7 @@ def __get_capture_for_comparison(self):
if recovered:
capture, _ = self.capture_method.get_frame(self)

return (
None
if not is_valid_image(capture)
else cv2.resize(capture, COMPARISON_RESIZE, interpolation=cv2.INTER_NEAREST),
is_old_image,
)
return None, is_old_image

def __reset_if_should(self, capture: cv2.Mat | None):
"""
Expand Down
16 changes: 12 additions & 4 deletions src/AutoSplitImage.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,9 @@
COMPARISON_RESIZE_WIDTH = 320
COMPARISON_RESIZE_HEIGHT = 240
COMPARISON_RESIZE = (COMPARISON_RESIZE_WIDTH, COMPARISON_RESIZE_HEIGHT)
LOWER_BOUND = np.array([0, 0, 0, 1], dtype="uint8")
UPPER_BOUND = np.array([MAXBYTE, MAXBYTE, MAXBYTE, MAXBYTE], dtype="uint8")
COMPARISON_RESIZE_AREA = COMPARISON_RESIZE_WIDTH * COMPARISON_RESIZE_HEIGHT
MASK_LOWER_BOUND = np.array([1], dtype="uint8")
MASK_UPPER_BOUND = np.array([MAXBYTE], dtype="uint8")
START_KEYWORD = "start_auto_splitter"
RESET_KEYWORD = "reset"

Expand Down Expand Up @@ -108,15 +109,22 @@ def __read_image_bytes(self, path: str):
error_messages.image_type(path)
return

image = cv2.resize(image, COMPARISON_RESIZE, interpolation=cv2.INTER_NEAREST)
self._has_transparency = check_if_image_has_transparency(image)
comparison_resize = COMPARISON_RESIZE
# If image has transparency, create a mask
if self._has_transparency:
alpha_channel = image[:, :, 3]
resize_control_ratio = int(min(1, COMPARISON_RESIZE_AREA / cv2.countNonZero(alpha_channel)) ** 0.5)
comparison_resize = (
resize_control_ratio * COMPARISON_RESIZE_WIDTH,
resize_control_ratio * COMPARISON_RESIZE_HEIGHT,
)
# Create mask based on resized, nearest neighbor interpolated split image
self.mask = cv2.inRange(image, LOWER_BOUND, UPPER_BOUND)
self.mask = cv2.inRange(alpha_channel, MASK_LOWER_BOUND, MASK_UPPER_BOUND)
# Add Alpha channel if missing
elif image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
image = cv2.resize(image, comparison_resize, interpolation=cv2.INTER_NEAREST)

self.byte_array = image

Expand Down
5 changes: 2 additions & 3 deletions src/compare.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@

import cv2
import imagehash
import numpy as np
from PIL import Image
from win32con import MAXBYTE

Expand Down Expand Up @@ -49,7 +48,7 @@ def compare_l2_norm(source: cv2.Mat, capture: cv2.Mat, mask: cv2.Mat | None = No
# The L2 Error is summed across all pixels, so this normalizes
max_error = (source.size ** 0.5) * MAXBYTE \
if not is_valid_image(mask)\
else (3 * np.count_nonzero(mask) * MAXBYTE * MAXBYTE) ** 0.5
else (3 * cv2.countNonZero(mask) * MAXBYTE * MAXBYTE) ** 0.5

if not max_error:
return 0.0
Expand All @@ -75,7 +74,7 @@ def compare_template(source: cv2.Mat, capture: cv2.Mat, mask: cv2.Mat | None = N
# that the value can be. Used for normalizing from 0 to 1.
max_error = source.size * MAXBYTE * MAXBYTE \
if not is_valid_image(mask) \
else np.count_nonzero(mask)
else cv2.countNonZero(mask)

return 1 - (min_val / max_error)

Expand Down
4 changes: 2 additions & 2 deletions typings/cv2/cv2.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -4391,7 +4391,7 @@ def cornerHarris(src: Mat, blockSize, ksize, k, dst: Mat = ..., borderType=...)
def cornerMinEigenVal(src: Mat, blockSize, dst: Mat = ..., ksize=..., borderType=...) -> _dst: ...
def cornerSubPix(image: Mat, corners, winSize, zeroZone, criteria) -> _corners: ...
def correctMatches(F, points1, points2, newPoints1=..., newPoints2=...) -> tuple[_newPoints1, _newPoints2]: ...
def countNonZero(src): ...
def countNonZero(src: Mat | _NumericScalar) -> int: ...
def createAlignMTB(max_bits=..., exclude_range=..., cut=...): ...
def createBackgroundSubtractorKNN(history=..., dist2Threshold=..., detectShadows=...): ...
def createBackgroundSubtractorMOG2(history=..., varThreshold=..., detectShadows=...): ...
Expand Down Expand Up @@ -4948,7 +4948,7 @@ def reprojectImageTo3D(disparity, Q, _3dImage=..., handleMissingValues=..., ddep


def resize(
src: Mat, dsize: _Size, dst: Mat = ..., fx: float = ...,
src: Mat | int | bool, dsize: _Size, dst: Mat | _NumericScalar = ..., fx: float = ...,
fy: float = ..., interpolation: int = ...,
) -> Mat: ...

Expand Down

0 comments on commit 482bbcb

Please sign in to comment.