Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: updated README #578

Merged
merged 3 commits into from
Dec 6, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 114 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,17 +7,128 @@
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![GitHub Discussions](https://img.shields.io/github/discussions/autoresearch/autora)

<a href="https://ccbs.carney.brown.edu/brainstorm"><img src="docs/img/brainstorm.png" alt="BRAINSTORM Program" height="60"></img></a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://schmidtsciencefellows.org/"><img src="docs/img/ssf.png" alt="BRAINSTORM Program" height="60"></img></a>

<b>[AutoRA](https://pypi.org/project/autora/)</b> (<b>Auto</b>mated <b>R</b>esearch <b>A</b>ssistant) is an open-source framework for
automating multiple stages of the empirical research process, including model discovery, experimental design, data collection, and documentation for open science.

AutoRA was initially intended for accelerating research in the behavioral and brain sciences. However, AutoRA is designed as a general framework that enables automation of the research processes in other empirical sciences, such as material science or physics.

![Autonomous Empirical Research Paradigm](https://github.com/AutoResearch/autora/raw/main/docs/img/overview.png)

## Getting Started
## Installation


We recommend using a `Python` environment manager like `virtualenv`. You may refer to the Development Guide on how to [set up a virtual environment](https://autoresearch.github.io/autora/contribute/setup/#create-a-virtual-environment).

Before installing the PyPI ``autora`` package, you may [activate your environment](https://autoresearch.github.io/autora/contribute/setup/#activating-and-using-the-environment). To install the PyPI `autora` package, run the following command:

```shell
pip install "autora"
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does autora need to be in quotes here? This is not the normal from my experience.

```

## Documentation

Check out tutorials and documentation at
[https://autoresearch.github.io/autora](https://autoresearch.github.io/autora). If you run into any issues or questions regarding the use of AutoRA, please reach out to us at the [AutoRA forum](https://github.com/orgs/AutoResearch/discussions/categories/using-autora).

## Example

The following example demonstrates how to use AutoRA to automate the process of model discovery, experimental design, and data collection.

The discovery problem is defined by a single independent variable $x \in [0, 2 \pi]$ and dependent variable $y$.
The experiment amounts to a simple sine wave, $y = \sin(x)$, which is the model we are trying to discover.

Th discovery cycle iterates between the experimentalist, experiment runner, and theorist. Here, we us a "random" experimentalist, which samples novel experimental conditions for $x$ every cycle.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Typo: Th -> The

The experiment runner then collects data for the corresponding $y$ values. Finally, the theorist uses a [Bayesian Machine Scientist](https://autoresearch.github.io/autora/user-guide/theorists/bms/) (BMS; Guimerà et al., in Science Advances) to identify a scientific model that explains the data.

The workflow relies on the ``StandardState`` object, which stores the current state of the discovery process, such as ``conditions``, ``experiment_data``, or ``models``. The state is passed between the experimentalist, experiment runner, and theorist.
Copy link
Collaborator

@chadcwilliams chadcwilliams Nov 30, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would say
"such as conditions, experiment_data, or models"
should be
"such as conditions, experiment_data, and models"



```python
####################################################################################
## Import statements
####################################################################################

import pandas as pd
import numpy as np
import sympy as sp

from autora.variable import Variable, ValueType, VariableCollection

from autora.experimentalist.random import random_pool
from autora.experiment_runner.synthetic.abstract.equation import equation_experiment
from autora.theorist.bms import BMSRegressor

from autora.state import StandardState, on_state, estimator_on_state

Check out the documentation at
[https://autoresearch.github.io/autora](https://autoresearch.github.io/autora).
####################################################################################
## Define initial data
####################################################################################

#### Define variable data ####
iv = Variable(name="x", value_range=(0, 2 * np.pi), allowed_values=np.linspace(0, 2 * np.pi, 30))
dv = Variable(name="y", type=ValueType.REAL)
variables = VariableCollection(independent_variables=[iv],dependent_variables=[dv])

#### Define seed condition data ####
conditions = random_pool(variables, num_samples=10, random_state=0)

####################################################################################
## Define experimentalist
####################################################################################

experimentalist = on_state(random_pool, output=["conditions"])

####################################################################################
## Define experiment runner
####################################################################################

sin_experiment = equation_experiment(sp.simplify('sin(x)'), variables.independent_variables, variables.dependent_variables[0])
sin_runner = sin_experiment.experiment_runner

experiment_runner = on_state(sin_runner, output=["experiment_data"])

####################################################################################
## Define theorist
####################################################################################

theorist = estimator_on_state(BMSRegressor(epochs=100))

####################################################################################
## Define state
####################################################################################

s = StandardState(
variables = variables,
conditions = conditions,
experiment_data = pd.DataFrame(columns=["x","y"])
)

####################################################################################
## Cycle through the state
####################################################################################

print('Pre-Defined State:')
print(f"Number of datapoints collected: {len(s['experiment_data'])}")
print(f"Derived models: {s['models']}")
print('\n')

for i in range(5):
s = experimentalist(s, num_samples=10, random_state=42)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is my error, sorry!

I would change the random state in both experimentalist and experiment_runner from random_state=42 to random_state=42+i because the former would use the same random state every cycle.

s = experiment_runner(s, added_noise=1.0, random_state=42)
s = theorist(s)
print(f"\nCycle {i+1} Results:")
print(f"Number of datapoints collected: {len(s['experiment_data'])}")
print(f"Derived models: {s['models']}")
print('\n')
```


## Contributions

We welcome contributions to the AutoRA project. Please refer to the [contributor guide](https://autoresearch.github.io/autora/contribute/) for more information. Also, feel free to ask any questions or provide any feedback regarding core contributions on the [AutoRA forum](https://github.com/orgs/AutoResearch/discussions/).

## About

Expand All @@ -27,9 +138,6 @@ in collaboration with the [Center for Computation and Visualization at Brown Uni

The development of this package is supported by Schmidt Science Fellows, in partnership with the Rhodes Trust, as well as the Carney BRAINSTORM program at Brown University.

<a href="https://ccbs.carney.brown.edu/brainstorm"><img src="docs/img/brainstorm.png" alt="BRAINSTORM Program" height="100"></img></a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://schmidtsciencefellows.org/"><img src="docs/img/ssf.png" alt="BRAINSTORM Program" height="80"></img></a>


## Read More

Expand Down