-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Loading status checks…
Merge pull request #672 from AutoResearch/doc/cheatsheet
docs: added cheatsheet
Showing
2 changed files
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
# Cheat Sheet | ||
|
||
This cheat sheet provides code snippets for key concepts and functionalities of AutoRA. You may use this as a resource for developing AutoRA workflows. | ||
|
||
## Installation | ||
|
||
[Installation Guide](installation.md) | ||
|
||
### Installing the main package: | ||
|
||
```shell | ||
pip install "autora" | ||
``` | ||
|
||
### Installing Optional Packages | ||
|
||
e.g., for ``autora-theorist-bms`` package: | ||
```shell | ||
pip install -U "autora[theorist-bms]" | ||
``` | ||
|
||
## AutoRA Variables | ||
|
||
[Variables Guide](https://autoresearch.github.io/autora/core/docs/Variable/) | ||
|
||
### Defining Variables | ||
|
||
```python | ||
from autora.variable import VariableCollection, Variable | ||
import numpy as np | ||
|
||
variables = VariableCollection( | ||
independent_variables=[ | ||
Variable(name="intensity", allowed_values[1, 2, 3, 4, 5]), | ||
Variable(name="duration", allowed_values=np.linspace(1, 100, 100)) | ||
], | ||
dependent_variables=[Variable(name="accuracy", value_range=(0, 1))] | ||
) | ||
``` | ||
|
||
### Extracting Variable Names | ||
|
||
```python | ||
ivs = [iv.name for iv in variables.independent_variables] | ||
dvs = [dv.name for dv in variables.dependent_variables] | ||
``` | ||
|
||
## AutoRA Components | ||
|
||
[Components Guide](tutorials/basic/Tutorial I Components.ipynb) | ||
|
||
### Theorists | ||
|
||
[Theorist Overview](theorist/index.md) | ||
|
||
#### Fit & Predict | ||
```python | ||
from autora.theorist.bms import BMSRegressor | ||
|
||
# declare theorist | ||
theorist = BMSRegressor(epochs=100) | ||
|
||
# fit theorist to data | ||
model = theorist.fit(conditions, observations) | ||
|
||
# predict new observations | ||
observations = theorist.predict(conditions) | ||
``` | ||
|
||
#### Write Custom Theorist | ||
|
||
[Custom Theorist Guide](contribute/modules/theorist.md) | ||
|
||
```python | ||
from sklearn.base import BaseEstimator | ||
|
||
class LogisticRegressor(BaseEstimator): | ||
def __init__(self, *args, **kwargs): | ||
self.model = MyTheoristMethod(*args, **kwargs) | ||
|
||
def fit(self, conditions, observations): | ||
self.model.fit(conditions, observations) | ||
return self | ||
|
||
def predict(self, conditions): | ||
return self.model.predict(observations) | ||
``` | ||
|
||
`conditions` should be a pandas DataFrame with columns corresponding to the independent variables. | ||
|
||
`observations` should be a pandas DataFrame with columns corresponding to the dependent variables. | ||
|
||
### Experimentalists | ||
|
||
[Experimentalist Overview](experimentalist/index.md) | ||
|
||
#### Generate Conditions | ||
```python | ||
from autora.experimentalist.random import random_pool | ||
|
||
conditions = random_pool(variables, num_samples=10) | ||
``` | ||
|
||
#### Write Custom Experimentalist | ||
|
||
[Custom Experimentalist Guide](contribute/modules/experimentalist.md) | ||
|
||
```python | ||
def my_experimentalist(allowed_conditions, num_samples): | ||
# ... | ||
return selected_conditions | ||
``` | ||
|
||
`conditions` should be a pandas DataFrame with columns corresponding to the independent variables. | ||
|
||
### Experiment Runners | ||
|
||
#### Run Experiment | ||
```python | ||
experiment_runner = weber_fechner_law() | ||
experiment_data = experiment_runner.run(conditions) | ||
``` | ||
|
||
`conditions` should be a pandas DataFrame with columns corresponding to the independent variables. | ||
|
||
``experiment_data`` should be a pandas DataFrame with columns corresponding to the dependent variables. | ||
|
||
#### Using Synthetic Experiment Runners | ||
|
||
Equation Runner Example: | ||
```python | ||
from autora.experiment_runner.synthetic.abstract.equation import equation_experiment | ||
from sympy import symbols | ||
import numpy as np | ||
|
||
x, y = symbols("x y") | ||
expr = x ** 2 - y ** 2 | ||
|
||
experiment = equation_experiment(expr) | ||
|
||
test_input = np.array([[1, 1], [2 ,2], [2 ,3]]) | ||
|
||
experiment.experiment_runner(test_input) | ||
``` | ||
|
||
Weber-Fechner Example: | ||
|
||
```python | ||
# synthetic experiment from autora inventory | ||
from autora.experiment_runner.synthetic.psychophysics.weber_fechner_law import weber_fechner_law | ||
|
||
synthetic_runner = weber_fechner_law(constant=3) | ||
|
||
variables = synthetic_runner.variables | ||
conditions = synthetic_runner.domain() | ||
experiment_data = synthetic_runner.run(conditions, added_noise=0.01) | ||
``` | ||
|
||
#### Using Behavioral Experiment Runners | ||
|
||
[Example Study Guide](examples/closed-loop-basic/index.md) | ||
|
||
##### Initializing and Running Firebase Runner | ||
|
||
```python | ||
firebase_credentials = { | ||
"type": "service_account", | ||
"project_id": "closed-loop-study", | ||
"private_key_id": "YOURKEYID", | ||
"private_key": "-----BEGIN PRIVATE KEY-----\nYOURCREDENTIALS\n-----END PRIVATE KEY-----\n", | ||
"client_email": "firebase-adminsdk-y7hnh@closed-loop-study.iam.gserviceaccount.com", | ||
"client_id": "YOURLIENTID", | ||
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | ||
"token_uri": "https://oauth2.googleapis.com/token", | ||
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | ||
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/firebase-adminsdk-y7hnh%40closed-loop-study.iam.gserviceaccount.com", | ||
"universe_domain": "googleapis.com" | ||
} | ||
|
||
experiment_runner = firebase_runner( | ||
firebase_credentials=firebase_credentials, | ||
time_out=5, | ||
sleep_time=3) | ||
|
||
data_raw = experiment_runner(conditions_to_send) | ||
``` | ||
|
||
##### Initializing and Running Prolific Runner | ||
|
||
```python | ||
sleep_time = 30 | ||
study_name = 'my autora experiment' | ||
study_description= 'Psychophysics Study' | ||
study_url = 'https://closed-loop-study.web.app/' | ||
study_completion_time = 5 | ||
prolific_token = 'my prolific token' | ||
completion_code = 'my completion code' | ||
|
||
experiment_runner = firebase_prolific_runner( | ||
firebase_credentials=firebase_credentials, | ||
sleep_time=sleep_time, | ||
study_name=study_name, | ||
study_description=study_description, | ||
study_url=study_url, | ||
study_completion_time=study_completion_time, | ||
prolific_token=prolific_token, | ||
completion_code=completion_code, | ||
) | ||
``` | ||
|
||
|
||
## State | ||
|
||
[State Guide](https://autoresearch.github.io/autora/core/docs/The%20State%20Mechanism/) | ||
|
||
### Defining Standard State | ||
|
||
```python | ||
from autora.state import StandardState | ||
state = StandardState( | ||
variables=variables, | ||
) | ||
``` | ||
|
||
### Defining Custom State | ||
|
||
```python | ||
from autora.state import StandardState | ||
from dataclasses import dataclass, field | ||
|
||
@dataclass(frozen=True) | ||
class MyCustomState(StandardState): | ||
additional_field: int = field( | ||
default_factory=list, | ||
metadata={"delta": "extend"}, | ||
) | ||
|
||
# initialize the state: | ||
state = MyCustomState(variables=variables) | ||
``` | ||
|
||
### Retrieving Data From State | ||
|
||
#### Conditions | ||
|
||
```python | ||
conditions = state.conditions | ||
``` | ||
|
||
or | ||
|
||
```python | ||
ivs = [iv.name for iv in variables.independent_variables] | ||
conditions = state.experiment_data[ivs] | ||
``` | ||
|
||
#### Experiment Data | ||
|
||
```python | ||
experiment_data = state.experiment_data | ||
``` | ||
|
||
#### Observations | ||
|
||
```python | ||
experiment_data = state.experiment_data | ||
|
||
dvs = [dv.name for dv in variables.dependent_variables] | ||
observations = experiment_data[dvs] | ||
``` | ||
|
||
#### Models | ||
```python | ||
last_model = state.model[-1] | ||
``` | ||
|
||
### Defining State Wrappers | ||
|
||
#### Theorist Wrapper | ||
```python | ||
from autora.state import on_state, Delta | ||
|
||
@on_state() | ||
def theorist_on_state(experiment_data, variables): | ||
ivs = [iv.name for iv in variables.independent_variables] | ||
dvs = [dv.name for dv in variables.dependent_variables] | ||
x = experiment_data[ivs] | ||
y = experiment_data[dvs] | ||
return Delta(models=[my_theorist.fit(x, y)]) | ||
``` | ||
|
||
#### Experimentalist Wrapper | ||
```python | ||
from autora.state import on_state, Delta | ||
|
||
@on_state() | ||
def experimentalist_on_state(allowed_conditions, num_samples): | ||
return Delta(conditions=my_experimentalist(allowed_conditions, num_samples)) | ||
``` | ||
|
||
#### Experiment Runner Wrapper | ||
```python | ||
from autora.state import on_state, Delta | ||
|
||
on_state() | ||
def experiment_runner_on_state(conditions, added_noise): | ||
return Delta(experiment_data=my_experiment_runner(conditions, added_noise)) | ||
``` | ||
|
||
### Calling State Wrappers | ||
|
||
```python | ||
state = runner_on_state(state) | ||
``` | ||
|
||
!!! warning | ||
When adding your own input arguments to the wrapper, be sure to call the wrapper with all arguments specified in the function signature, e.g., for | ||
```python | ||
@on_state() | ||
def experimentalist_on_state(conditions, num_samples): | ||
return Delta(conditions=my_experimentalist(allowed_conditions, num_samples)) | ||
``` | ||
``conditions`` is a variable retrieved from the state and ``num_samples`` is a custom argument. Thus, you must call the wrapper with | ||
```python | ||
experimentalist_on_state(state, num_samples=num_samples) | ||
``` | ||
Note that `experimentalist_on_state(state, num_samples)` will throw an error. | ||
|
||
### Running a Basic Workflow | ||
|
||
[Workflow Guide](tutorials/basic/Tutorial III Functional Workflow.ipynb) | ||
|
||
#### Without State Wrappers | ||
|
||
```python | ||
conditions = initial_experimentalist(state.variables) | ||
|
||
for cycle in range(num_cycles): | ||
observations = experiment_runner(conditions, added_noise=1.0) | ||
model = theorist(conditions, observations) | ||
conditions = experimentalist(model, conditions, observations, num_samples=10) | ||
``` | ||
|
||
#### With State Wrappers | ||
|
||
```python | ||
state = initial_experimentalist_on_state(state) | ||
|
||
for cycle in range(num_cycles): | ||
state = experiment_runner_on_state(state, num_samples=10) | ||
state = theorist_on_state(state) | ||
state = experimentalist_on_state(state, model=state.model[-1]) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters