Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Stevens' Power Law to synthetic models #11

Merged
merged 11 commits into from
Aug 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
from functools import partial
from typing import Optional, Union

import numpy as np
import pandas as pd

TheLemonPig marked this conversation as resolved.
Show resolved Hide resolved
from autora.experiment_runner.synthetic.utilities import SyntheticExperimentCollection
from autora.variable import DV, IV, ValueType, VariableCollection


def stevens_power_law(
name="Stevens' Power Law",
resolution=100,
proportionality_constant=1.0,
modality_constant=0.8,
maximum_stimulus_intensity=5.0,
random_state: Optional[int] = None,
):
"""
Stevens' Power Law

Args:
name: name of the experiment
resolution: number of allowed values for stimulus
modality_constant: power constant
proportionality_constant: constant multiplier
maximum_stimulus_intensity: maximum value for stimulus
random_state: integer used to seed the random number generator

"""

params = dict(
name=name,
resolution=resolution,
proportionality_constant=proportionality_constant,
modality_constant=modality_constant,
maximum_stimulus_intensity=maximum_stimulus_intensity,
random_state=random_state,
)

iv1 = IV(
name="S",
allowed_values=np.linspace(1 / resolution, maximum_stimulus_intensity, resolution),
value_range=(1 / resolution, maximum_stimulus_intensity),
units="intensity",
variable_label="Stimulus Intensity",
type=ValueType.REAL
)

dv1 = DV(
name="perceived_intensity",
value_range=(0, maximum_stimulus_intensity),
units="sensation",
variable_label="Perceived Intensity",
type=ValueType.REAL
)

variables = VariableCollection(
independent_variables=[iv1],
dependent_variables=[dv1],
)

rng = np.random.default_rng(random_state)

def experiment_runner(
conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
observation_noise: float = 0.01,
):
X = np.array(conditions)
Y = np.zeros((X.shape[0], 1))
for idx, x in enumerate(X):
y = proportionality_constant * x[0] ** modality_constant + rng.random.normal(0, std)
Y[idx] = y

return Y

ground_truth = partial(experiment_runner, observation_noise =0.0)

def domain():
s_values = variables.independent_variables[0].allowed_values

X = np.array(np.meshgrid(s_values)).T.reshape(-1, 1)
return X

def plotter(
model=None,
):
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

colors = mcolors.TABLEAU_COLORS
col_keys = list(colors.keys())
X = domain()
y = ground_truth(X)
plt.plot(X, y, label="Original", c=colors[col_keys[0]])
if model is not None:
y = model.predict(X)
plt.plot(X, y, label=f"Recovered", c=colors[col_keys[0]], linestyle="--")
x_limit = [0, variables.independent_variables[0].value_range[1]]
y_limit = [0, 4]
x_label = "Stimulus Intensity"
y_label = "Perceived Stimulus Intensity"

plt.xlim(x_limit)
plt.ylim(y_limit)
plt.xlabel(x_label, fontsize="large")
plt.ylabel(y_label, fontsize="large")
plt.legend(loc=2, fontsize="medium")
plt.title("Stevens' Power Law", fontsize="x-large")
plt.show()

collection = SyntheticExperimentCollection(
name=name,
description=stevens_power_law.__doc__,
variables=variables,
experiment_runner=experiment_runner,
ground_truth=ground_truth,
domain=domain,
plotter=plotter,
params=params,
factory_function=stevens_power_law,
)
return collection
4 changes: 4 additions & 0 deletions tests/test_bundled_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,9 @@
from autora.experiment_runner.synthetic.psychophysics.weber_fechner_law import (
weber_fechner_law,
)
from autora.experiment_runner.synthetic.psychophysics.stevens_power_law import (
stevens_power_law,
)
from autora.experiment_runner.synthetic.psychology.exp_learning import (
exp_learning,
)
Expand All @@ -25,6 +28,7 @@
("luce_choice_ratio", luce_choice_ratio),
("template_experiment", template_experiment),
("weber_fechner_law", weber_fechner_law),
("stevens_power_law", stevens_power_law),
]

all_bundled_model_names = [b[0] for b in all_bundled_models]
Expand Down