The uncertainty experimentalist identifies experimental conditions
where
where
from autora.experimentalist.uncertainty import uncertainty_sample
from sklearn.linear_model import LogisticRegression
import numpy as np
#Meta-Setup
X = np.linspace(start=-3, stop=6, num=10).reshape(-1, 1)
y = (X**2).reshape(-1)
n = 5
#Theorists
lr_theorist = LogisticRegression()
lr_theorist.fit(X,y)
#Experimentalist
X_new = uncertainty_sample(X, lr_theorist, n, measure ="least_confident")