Reconstructs a 3D scene by generating a dense depth map from a set of images capturing a scene.
This algorithm first uses KLT Tracking to track features across all images. We use Bundle Adjustment using the Ceres Solver and estimate the extrinsic camera parameters. Finally, we solve a smooth dense map using a DenseCRF formulation. Implemented as a part of the Computer Vision course at IIIT H.
mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver-1.11.0/
make -j4
orbash recompile.sh
pip install -r requirements.txt
cd src
python main.py
-
python dense_crf.py --min_d 2 --max_d 4 --scale 2 --patch_rad 1 --iters 100 --p_std 3,3 --c_std 20,20,20 --wt 1 --max_p 0.15 --folder stone4 --nsamples 64 --show_wta
-
If plane sweeping is already computed for the scene, add the flag
--pc <path-to-npz>
cd outputs
cd src
chmod +x src/pydensecrf_setup.sh
./pydensecrf_setup.sh
Note: Make sure Cython
is installed before running the above commands.
- Download the dataset from here and store it in ./datasets
- KLT
- Filtering Good Points
- Bundle Adjustment
- CRF Energy Minimization
- Integration