Official Pytorch implementation for Semantically Structured Image Compression via Irregular Group-Based Decoupling, ICCV2023
Ruoyu Feng*, Yixin Gao*, Xin Jin, Runsen Feng, Zhibo Chen
conda create --name git_ssic python==3.9
conda activate git_ssic
# pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html # seems to cause bug when training group-swin
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
python -m pip install -r requirements.txt
cd data_compression
pip install -e .
cd ..
Download our pretrained models from Google Drive
CUDA_VISIBLE_DEVICES=0 python train.py \
--model ours_groupswin_channelar --hyper-channels 192 192 192 \
--lmbda 8192 --lr 5e-5 \
--train-set /home/t2vg-a100-G4-10/project/qyp/datasets/COCO/train2017 \
--eval-set /home/t2vg-a100-G4-10/mnt/guangtingsc_fengry/dataset/CompressionData/kodak \
--groupvit-load-group-msk figs/kodak/group_msk \
--total-iteration 2000000 --multistep-milestones 1600000 --eval-interval 10
export CUDA_VISIBLE_DEVICES="0"
python -u compress_multiple_images.py \
compress \
--model ours_groupswin_channelar \
--resume path_to_checkpoint \
--input_file_glob path_to_imgs \
--groupvit_load_group_mask path_to_group_mask (see /figs/kodak/group_msk for example) \
--output_file_dir codestream/bitstream \
--verbose --hyper-channels 192 192 192 \
--groups_tobe_decode 0 1 2 3
export CUDA_VISIBLE_DEVICES="0"
python -u compress_multiple_images.py \
compress \
--model ours_groupswin_channelar_woStructure \
--resume path_to_checkpoint \
--input_file_glob path_to_imgs \
--output_file_dir logs \
--verbose --hyper-channels 192 192 192
If you find this work useful for your research, please cite:
@inproceedings{feng2023semantically,
title={Semantically structured image compression via irregular group-based decoupling},
author={Feng, Ruoyu and Gao, Yixin and Jin, Xin and Feng, Runsen and Chen, Zhibo},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={17237--17247},
year={2023}
}