Skip to content

Commit

Permalink
Controlnet training (huggingface#2545)
Browse files Browse the repository at this point in the history
* Controlnet training code initial commit

Works with circle dataset: https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md

* Script for adding a controlnet to existing model

* Fix control image transform

Control image should be in 0..1 range.

* Add license header and remove more unused configs

* controlnet training readme

* Allow nonlocal model in add_controlnet.py

* Formatting

* Remove unused code

* Code quality

* Initialize controlnet in training script

* Formatting

* Address review comments

* doc style

* explicit constructor args and submodule names

* hub dataset

NOTE -  not tested

* empty prompts

* add conditioning image

* rename

* remove instance data dir

* image_transforms -> -1,1 . conditioning_image_transformers -> 0, 1

* nits

* remove local rank config

I think this isn't necessary in any of our training scripts

* validation images

* proportion_empty_prompts typo

* weight copying to controlnet bug

* call log validation fix

* fix

* gitignore wandb

* fix progress bar and resume from checkpoint iteration

* initial step fix

* log multiple images

* fix

* fixes

* tracker project name configurable

* misc

* add controlnet requirements.txt

* update docs

* image labels

* small fixes

* log validation using existing models for pipeline

* fix for deepspeed saving

* memory usage docs

* Update examples/controlnet/train_controlnet.py

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/train_controlnet.py

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <[email protected]>

* remove extra is main process check

* link to dataset in intro paragraph

* remove unnecessary paragraph

* note on deepspeed

* Update examples/controlnet/README.md

Co-authored-by: Patrick von Platen <[email protected]>

* assert -> value error

* weights and biases note

* move images out of git

* remove .gitignore

---------

Co-authored-by: William Berman <[email protected]>
Co-authored-by: Sayak Paul <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
  • Loading branch information
4 people authored and Jimmy committed Apr 26, 2024
1 parent 57f9c3c commit d002631
Show file tree
Hide file tree
Showing 6 changed files with 1,406 additions and 3 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -172,3 +172,5 @@ tags

# ruff
.ruff_cache

wandb
269 changes: 269 additions & 0 deletions examples/controlnet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
# ControlNet training example

[Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) by Lvmin Zhang and Maneesh Agrawala.

This example is based on the [training example in the original ControlNet repository](https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md). It trains a ControlNet to fill circles using a [small synthetic dataset](https://huggingface.co/datasets/fusing/fill50k).

## Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```

Then cd in the example folder and run
```bash
pip install -r requirements.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

Or for a default accelerate configuration without answering questions about your environment

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell e.g. a notebook

```python
from accelerate.utils import write_basic_config
write_basic_config()
```

## Circle filling dataset

The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script.

Our training examples use [Stable Diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the original set of ControlNet models were trained from it. However, ControlNet can be trained to augment any Stable Diffusion compatible model (such as [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)) or [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1).

## Training

Our training examples use two test conditioning images. They can be downloaded by running

```sh
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png

wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
```


```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"

accelerate launch train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=4
```

This default configuration requires ~38GB VRAM.

By default, the training script logs outputs to tensorboard. Pass `--report_to wandb` to use weights and
biases.

Gradient accumulation with a smaller batch size can be used to reduce training requirements to ~20 GB VRAM.

```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"

accelerate launch train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4
```

## Example results

#### After 300 steps with batch size 8

| | |
|-------------------|:-------------------------:|
| | red circle with blue background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![red circle with blue background](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/red_circle_with_blue_background_300_steps.png) |
| | cyan circle with brown floral background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png) | ![cyan circle with brown floral background](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/cyan_circle_with_brown_floral_background_300_steps.png) |


#### After 6000 steps with batch size 8:

| | |
|-------------------|:-------------------------:|
| | red circle with blue background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![red circle with blue background](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/red_circle_with_blue_background_6000_steps.png) |
| | cyan circle with brown floral background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png) | ![cyan circle with brown floral background](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/cyan_circle_with_brown_floral_background_6000_steps.png) |

## Training on a 16 GB GPU

Optimizations:
- Gradient checkpointing
- bitsandbyte's 8-bit optimizer

[bitandbytes install instructions](https://github.com/TimDettmers/bitsandbytes#requirements--installation).

```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"

accelerate launch train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--use_8bit_adam
```

## Training on a 12 GB GPU

Optimizations:
- Gradient checkpointing
- bitsandbyte's 8-bit optimizer
- xformers
- set grads to none

```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"

accelerate launch train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--use_8bit_adam \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none
```

When using `enable_xformers_memory_efficient_attention`, please make sure to install `xformers` by `pip install xformers`.

## Training on an 8 GB GPU

We have not exhaustively tested DeepSpeed support for ControlNet. While the configuration does
save memory, we have not confirmed the configuration to train successfully. You will very likely
have to make changes to the config to have a successful training run.

Optimizations:
- Gradient checkpointing
- xformers
- set grads to none
- DeepSpeed stage 2 with parameter and optimizer offloading
- fp16 mixed precision

[DeepSpeed](https://www.deepspeed.ai/) can offload tensors from VRAM to either
CPU or NVME. This requires significantly more RAM (about 25 GB).

Use `accelerate config` to enable DeepSpeed stage 2.

The relevant parts of the resulting accelerate config file are

```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
```
See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options.
Changing the default Adam optimizer to DeepSpeed's Adam
`deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but
it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer
does not seem to be compatible with DeepSpeed at the moment.

```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"
accelerate launch train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none \
--mixed_precision fp16
```

## Performing inference with the trained ControlNet

The trained model can be run the same as the original ControlNet pipeline with the newly trained ControlNet.
Set `base_model_path` and `controlnet_path` to the values `--pretrained_model_name_or_path` and
`--output_dir` were respectively set to in the training script.

```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
import torch
base_model_path = "path to model"
controlnet_path = "path to controlnet"
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
control_image = load_image("./conditioning_image_1.png")
prompt = "pale golden rod circle with old lace background"
# generate image
generator = torch.manual_seed(0)
image = pipe(
prompt, num_inference_steps=20, generator=generator, image=control_image
).images[0]
image.save("./output.png")
```
6 changes: 6 additions & 0 deletions examples/controlnet/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
accelerate
torchvision
transformers>=4.25.1
ftfy
tensorboard
datasets
Loading

0 comments on commit d002631

Please sign in to comment.