-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add centroid transforms * formatting * simplify slice generation, add comments from matheus --------- Co-authored-by: Benjamin Morris <[email protected]>
- Loading branch information
1 parent
76eeab4
commit 8a88689
Showing
1 changed file
with
136 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
from typing import Optional, Sequence, Union | ||
|
||
import numpy as np | ||
import torch | ||
from monai.transforms import RandomizableTransform, Transform | ||
from omegaconf import ListConfig | ||
from skimage.measure import regionprops | ||
|
||
|
||
class CentroidCrop: | ||
"""Class for cropping patches around passed centroids in an image.""" | ||
|
||
def __init__(self, crop_size: Sequence[str], remove_edge: bool = True): | ||
self.half_crop_size = np.array(crop_size) // 2 | ||
self.remove_edge = remove_edge | ||
|
||
def centroid_to_slice(self, centroid: Sequence[int]): | ||
# add empty slice to include channel dimension | ||
return tuple( | ||
[slice(None, None)] | ||
+ [slice(int(c - h), int(c + h)) for c, h in zip(centroid, self.half_crop_size)] | ||
) | ||
|
||
def _filter_edge( | ||
self, | ||
centroids: Sequence[Sequence[int]], | ||
shape: Sequence[int], | ||
labels: Optional[Sequence[int]] = None, | ||
): | ||
if len(shape) != len(self.half_crop_size): | ||
raise ValueError("Image shape and crop_size must have the same dimensionality") | ||
centroids = np.array(centroids) | ||
|
||
valid_mask = np.all( | ||
(centroids >= self.half_crop_size) | ||
& (centroids < (np.array(shape) - self.half_crop_size)), | ||
axis=1, | ||
) | ||
|
||
valid_centroids = centroids[valid_mask] | ||
if labels is None: | ||
return valid_centroids, None | ||
return valid_centroids, np.array(labels)[valid_mask] | ||
|
||
def __call__( | ||
self, | ||
data: Union[np.ndarray, torch.Tensor], | ||
centroids: Sequence[Sequence[int]], | ||
labels: Optional[Sequence[int]] = None, | ||
name="data", | ||
): | ||
# don't include channel dimension in edge validation | ||
centroids, labels = self._filter_edge(centroids, data.shape[1:], labels) | ||
if len(centroids) == 0: | ||
raise ValueError("No valid centroids found") | ||
crops = [{name: data[self.centroid_to_slice(c)], "centroid": c} for c in centroids] | ||
if labels is not None: | ||
for crop, label in zip(crops, labels): | ||
crop[name] = label | ||
return crops | ||
|
||
|
||
class CentroidCropd(CentroidCrop, Transform): | ||
"""Transform for cropping patches around dictionary of images and corresponding centroids.""" | ||
|
||
def __init__( | ||
self, | ||
keys: Sequence[str], | ||
crop_size: Sequence[int], | ||
centroid_key: str = "centroid", | ||
label_key: str = "label", | ||
remove_edge: bool = True, | ||
): | ||
super().__init__(crop_size, remove_edge) | ||
self.keys = keys | ||
self.centroid_key = centroid_key | ||
self.label_key = label_key | ||
|
||
def __call__(self, data): | ||
centroids = data[self.centroid_key] | ||
labels = data[self.label_key] if self.label_key in data else None | ||
all_crops = None | ||
# data is C[Z]YX | ||
for k in self.keys: | ||
crops = super().__call__(data[k], centroids, labels, name=k) | ||
if not all_crops: | ||
all_crops = crops | ||
else: | ||
for i, crop in enumerate(crops): | ||
all_crops[i][k] = crop[k] | ||
return all_crops | ||
|
||
|
||
class SegCropd(RandomizableTransform): | ||
"""Monai-style transform to crop a given size patch from an input image centered around each of | ||
the objects in an instance segmentation image.""" | ||
|
||
def __init__( | ||
self, | ||
raw_keys: Union[str, Sequence[str]], | ||
seg_key: str, | ||
crop_size: Sequence[int], | ||
remove_edge: bool = True, | ||
limit: Optional[int] = None, | ||
): | ||
super().__init__() | ||
self.raw_keys = raw_keys if isinstance(raw_keys, (list, tuple, ListConfig)) else [raw_keys] | ||
self.seg_key = seg_key | ||
self.limit = limit | ||
|
||
self.cropper = CentroidCrop(crop_size, remove_edge) | ||
|
||
def get_centroids(self, seg): | ||
props = regionprops(seg) | ||
return [prop.centroid for prop in props], [prop.label for prop in props] | ||
|
||
def __call__(self, data): | ||
seg = data[self.seg_key].squeeze(0).astype(int) | ||
seg = seg.numpy() if isinstance(seg, torch.Tensor) else seg | ||
centroids, labels = self.get_centroids(seg) | ||
|
||
if self.limit is not None: | ||
idx = np.random.choice(len(centroids), self.limit) | ||
centroids = np.array(centroids)[idx] | ||
labels = np.array(labels)[idx] | ||
|
||
all_crops = None | ||
# data is C[Z]YX | ||
for k in self.raw_keys + [self.seg_key]: | ||
crops = self.cropper(data[k], centroids, labels, name=k) | ||
if not all_crops: | ||
all_crops = crops | ||
else: | ||
for i, crop in enumerate(crops): | ||
all_crops[i][k] = crop[k] | ||
return all_crops |