-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* ee parser work bringup * started updating parser, temp save * expanded subgraphs, updated explicit edges of subnodes * added early exit dataflow edges to output of If operation/layer * adding splitlayers to branching connections, removed extra nodes * adding buffer layer, reworking ctrl edges * updated parsering layers * added Buffer and BufferLayer for hw optimiser * ignoring egg dir, adding custom setup for recompilation ease * updated Buffer layer/mod, added Exit layers, updated init * updated add_hardware with new layers, linking control signals, fixing graph and ctrl edges * updating add_dimensions function - savepoint * fixing additional conflicts after rebase * init hw for split layer, fixed comment typos * working parser for branchnet onnx graph (somewhat verified)
- Loading branch information
1 parent
b273d34
commit 4edc459
Showing
13 changed files
with
889 additions
and
94 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import setuptools | ||
|
||
with open("README.md", "r", encoding="utf-8") as fh: | ||
long_description = fh.read() | ||
|
||
setuptools.setup( | ||
name="fpgaconvnet-optimiser-BenDev", # Replace with your own username | ||
version="0.0.6", | ||
author="Alex Montgomerie & Ben Biggs", | ||
author_email="[email protected] [email protected]", | ||
description="Optimiser for mapping convolutional neural network models to FPGA platforms.", | ||
long_description=long_description, | ||
long_description_content_type="text/markdown", | ||
url="https://github.com/AlexMontgomerie/fpgaconvnet-optimiser", | ||
include_package_data=True, | ||
packages=setuptools.find_packages(), | ||
classifiers=[ | ||
"Programming Language :: Python :: 3", | ||
"Operating System :: OS Independent", | ||
], | ||
python_requires='>=3.6', | ||
install_requires=[ | ||
"networkx>=2.5", | ||
"numpy>=1.19.2", | ||
"protobuf>=3.13.0", | ||
"torch>=1.7.1", | ||
"pyyaml>=5.1.0", | ||
"scipy>=1.2.1", | ||
"torchvision>=0.8.2", | ||
"onnx==1.8.0", | ||
"onnxruntime>=1.6.0", | ||
"graphviz>=0.16", | ||
"pydot>=1.4.2", | ||
"onnxoptimizer>=0.2.5", | ||
"ddt>=1.4.2", | ||
] | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
""" | ||
Buffering layer | ||
Stores intermediate compute information such as results from Conv or Pool layers. | ||
During DSE the required size will be calculated to store intermediate results at | ||
branching layers. The position of the buffer layer will then be moved along a | ||
given branch until the buffer size is feasible and the latency of the exit | ||
condition is mitigated/matched. For effective pipelining I think. | ||
Secondary function of the buffer is to "drop" a partial calculation. | ||
Clear a FIFO - takes X number of cycles? | ||
Drop signal will be control signal from the Exit Condition. | ||
Future goal will be to have buffer as an offchip memory link. | ||
In this case, the drop might not be used. | ||
If "drop_mode" True then when True ctrl signal received, drop the data. | ||
If "drop_mode" False then use inverted ctrl signal. | ||
""" | ||
|
||
import numpy as np | ||
import math | ||
import pydot | ||
import torch | ||
|
||
from fpgaconvnet_optimiser.models.modules import Buffer | ||
#from fpgaconvnet_optimiser.models.modules import Fork | ||
from fpgaconvnet_optimiser.models.layers import Layer | ||
|
||
class BufferLayer(Layer): | ||
def __init__( | ||
self, | ||
rows: int, | ||
cols: int, | ||
channels: int, | ||
coarse_in: int, | ||
coarse_out: int, | ||
ctrledge, | ||
drop_mode =True, | ||
data_width =16, | ||
): | ||
# initialise parent class | ||
super().__init__([rows],[cols],[channels],[coarse_in],[coarse_out]) | ||
|
||
#ctrledge links to exit condition layer | ||
self.ctrledge = ctrledge | ||
self.drop_mode = drop_mode | ||
|
||
#init modules | ||
self.modules = { | ||
"buffer" : Buffer(rows,cols,channels, ctrledge, data_width) | ||
} | ||
self.update() | ||
|
||
## LAYER INFO ## | ||
def layer_info(self,parameters,batch_size=1): | ||
parameters.batch_size = batch_size | ||
parameters.buffer_depth = self.buffer_depth | ||
parameters.rows_in = self.rows_in(0) | ||
parameters.cols_in = self.cols_in(0) | ||
parameters.channels_in = self.channels_in0() | ||
parameters.rows_out = self.rows_out(0) | ||
parameters.cols_out = self.cols_out(0) | ||
parameters.channels_out = self.channels_out(0) | ||
parameters.coarse_in = self.coarse_in | ||
parameters.coarse_out = self.coarse_out | ||
|
||
## UPDATE MODULES ## | ||
def update(self): | ||
self.modules['buffer'].rows = self.rows_in(0) | ||
self.modules['buffer'].cols = self.cols_in(0) | ||
self.modules['buffer'].channels = self.channels_in(0) | ||
#TODO work out if channels = int(self.channels/self.coarse_in) | ||
|
||
|
||
### RATES ### | ||
def rates_graph(self): | ||
rates_graph = np.zeros( shape=(1,2) , dtype=float ) | ||
#buffer | ||
rates_graph[0,0] = self.modules['buffer'].rate_in(0) | ||
rates_graph[0,1] = self.modules['buffer'].rate_out(0) | ||
return rates_graph | ||
|
||
def update_coarse_in(self, coarse_in): | ||
self.coarse_in = coarse_in | ||
|
||
def update_coarse_out(self, coarse_out): | ||
self.coarse_out = coarse_out | ||
|
||
#def get_weights_reloading_feasible(self): | ||
|
||
def resource(self): | ||
|
||
buff_rsc = self.modules['buffer'].rsc() | ||
|
||
# Total | ||
return { | ||
"LUT" : buff_rsc['LUT']*self.coarse_in, | ||
"FF" : buff_rsc['FF']*self.coarse_in, | ||
"BRAM" : buff_rsc['BRAM']*self.coarse_in, | ||
"DSP" : buff_rsc['DSP']*self.coarse_in, | ||
} | ||
|
||
def visualise(self,name): | ||
cluster = pydot.Cluster(name,label=name) | ||
|
||
for i in range(self.coarse_in): | ||
cluster.add_node(pydot.Node( "_".join([name,"buff",str(i)]), label="buff" )) | ||
|
||
# get nodes in and out | ||
nodes_in = [ "_".join([name,"buff",str(i)]) for i in range(self.coarse_in) ] | ||
nodes_out = nodes_in | ||
|
||
return cluster, nodes_in, nodes_out | ||
|
||
def functional_model(self, data, ctrl_drop): | ||
#Buffer is not an ONNX or pytorch op | ||
# check input dimensionality | ||
assert data.shape[0] == self.rows_in(0) , "ERROR (data): invalid row dimension" | ||
assert data.shape[1] == self.cols_in(0) , "ERROR (data): invalid column dimension" | ||
assert data.shape[2] == self.channels_in(0), "ERROR (data): invalid channel dimension" | ||
|
||
out = np.zeros(( | ||
self.rows, | ||
self.cols, | ||
self.channels),dtype=float) | ||
|
||
if self.drop_mode: #non-inverted | ||
if ctrl_drop: | ||
return out | ||
else: | ||
return data #pass through | ||
else: #inverted | ||
if not ctrl_drop: | ||
return out | ||
else: | ||
return data #pass through | ||
|
106 changes: 106 additions & 0 deletions
106
fpgaconvnet_optimiser/models/layers/ExitConditionLayer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
""" | ||
Exit Condition layer | ||
Takes the input and performs Softmax, then takes the maximum value, and | ||
compares it to the exit threshold value specified in the model. | ||
This generates a control signal that will terminate the execution early | ||
or allow the input sample to pass through the graph. | ||
TODO Add other variations of the exit condition. | ||
""" | ||
|
||
import torch | ||
import math | ||
import numpy as np | ||
import pydot | ||
|
||
#from fpgaconvnet_optimiser.models.modules import SlidingWindow | ||
#from fpgaconvnet_optimiser.models.modules import Pool | ||
from fpgaconvnet_optimiser.models.layers import Layer | ||
|
||
class ExitConditionLayer(Layer): | ||
def __init__( | ||
self, | ||
rows: int, | ||
cols: int, | ||
channels: int, | ||
coarse_in: int, | ||
coarse_out: int, | ||
ctrledges: [str], #expecting list | ||
cond_type = 'top1', | ||
data_width = 16 | ||
): | ||
super().__init__([rows],[cols],[channels],[coarse_in],[coarse_out]) | ||
|
||
self.ctrledges = ctrledges | ||
self.cond_type = cond_type | ||
|
||
#update flags | ||
|
||
#init modules | ||
#TODO | ||
self.modules = { | ||
} | ||
|
||
self.update() | ||
|
||
def layer_info(self,parameters,batch_size=1): | ||
parameters.batch_size = batch_size | ||
parameters.buffer_depth = self.buffer_depth | ||
parameters.rows_in = self.rows_in() | ||
parameters.rows_in = self.rows_in() | ||
parameters.cols_in = self.cols_in() | ||
parameters.channels_in = self.channels_in() | ||
parameters.rows_out = self.rows_out() | ||
parameters.cols_out = self.cols_out() | ||
parameters.channels_out = self.channels_out() | ||
parameters.coarse = self.coarse_in | ||
parameters.coarse_in = self.coarse_in | ||
parameters.coarse_out = self.coarse_out | ||
|
||
def update(self): #TODO | ||
Layer.update(self) | ||
|
||
def rates_graph(self): #TODO | ||
rates_graph = np.zeros( shape=(1,2), dtype=float) | ||
return rates_graph | ||
|
||
def resource(self): #TODO | ||
mod_rsc = 0#self.modules['mod'].rsc() | ||
|
||
# Total | ||
return { | ||
"LUT" : mod_rsc['LUT']*self.coarse_in, | ||
"FF" : mod_rsc['FF']*self.coarse_in, | ||
"BRAM" : mod_rsc['BRAM']*self.coarse_in, | ||
"DSP" : mod_rsc['DSP']*self.coarse_in, | ||
} | ||
|
||
def visualise(self,name): #TODO replace 'mod' with actual modules used | ||
cluster = pydot.Cluster(name,label=name) | ||
|
||
for i in range(self.coarse_in): | ||
cluster.add_node(pydot.Node( "_".join([name,"mod",str(i)]), label="mod" )) | ||
|
||
for i in range(self.coarse_out): | ||
cluster.add_node(pydot.Node( "_".join([name,"mod",str(i)]), label="mod" )) | ||
|
||
# get nodes in and out | ||
nodes_in = [ "_".join([name,"mod",str(i)]) for i in range(self.coarse_in) ] | ||
nodes_out = [ "_".join([name,"mod",str(i)]) for i in range(self.coarse_out) ] | ||
|
||
return cluster, nodes_in, nodes_out | ||
|
||
def functional_model(self, data, threshold): | ||
|
||
assert data.shape[0] == self.rows , "ERROR (data): invalid row dimension" | ||
assert data.shape[1] == self.cols , "ERROR (data): invalid column dimension" | ||
assert data.shape[2] == self.channels, "ERROR (data): invalid channel dimension" | ||
|
||
#instantiate softmax layer | ||
softmax_layer = torch.nn.Softmax() #TODO move softmax to separate layer | ||
pk = softmax_layer(torch.from_numpy(data)).detach() | ||
#get max value | ||
top1 = torch.max(pk) | ||
#True = early exit, drop buffered data | ||
return top1 > threshold |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
""" | ||
Exit Selection Layer | ||
This layer merges all exit results into a single point for the output to offchip mem. | ||
The select lines will be driven by the control signal from each exit condition layer. | ||
""" | ||
|
||
import numpy as np | ||
import math | ||
import pydot | ||
import torch | ||
|
||
from fpgaconvnet_optimiser.models.layers import Layer | ||
|
||
class ExitSelectLayer(Layer): | ||
def __init__( | ||
self, | ||
rows: int, | ||
cols: int, | ||
channels: int, | ||
coarse_in: int, | ||
coarse_out: int, | ||
ctrledge: str, | ||
data_width =16, | ||
): | ||
# initialise parent class | ||
#rows, cols, channels will be the same for both inputs | ||
super().__init__( [rows,rows], | ||
[cols,cols], | ||
[channels,channels], | ||
[coarse_in,coarse_in], | ||
[coarse_out,coarse_out]) | ||
|
||
#index 0 is then_branch, index 1 is else_branch | ||
#ctrledge links to exit condition layer | ||
self.ctrledge = ctrledge | ||
|
||
#init modules | ||
self.modules = { | ||
} | ||
self.update() | ||
|
||
## LAYER INFO ## | ||
def layer_info(self,parameters,batch_size=1): | ||
#TODO | ||
#parameters.batch_size = batch_size | ||
#parameters.buffer_depth = self.buffer_depth | ||
#parameters.rows_in = self.rows_in() | ||
#parameters.cols_in = self.cols_in() | ||
#parameters.channels_in = self.channels_in() | ||
#parameters.rows_out = self.rows_out() | ||
#parameters.cols_out = self.cols_out() | ||
#parameters.channels_out = self.channels_out() | ||
#parameters.coarse_in = self.coarse_in | ||
#parameters.coarse_out = self.coarse_out | ||
return | ||
|
||
## UPDATE MODULES ## | ||
def update(self): #TODO | ||
return | ||
|
||
### RATES ### | ||
def rates_graph(self): | ||
rates_graph = np.zeros( shape=(1,2) , dtype=float ) | ||
|
||
#rates_graph[0,0] = self.modules['mod'].rate_in() | ||
#rates_graph[0,1] = self.modules['mod'].rate_out() | ||
return rates_graph | ||
|
||
def resource(self): | ||
|
||
mod_rsc = self.modules['mod'].rsc() | ||
|
||
# Total | ||
return { | ||
"LUT" : buff_rsc['LUT']*self.coarse_in, | ||
"FF" : buff_rsc['FF']*self.coarse_in, | ||
"BRAM" : buff_rsc['BRAM']*self.coarse_in, | ||
"DSP" : buff_rsc['DSP']*self.coarse_in, | ||
} | ||
|
||
def visualise(self,name): #TODO replace 'mod' with actual modules used | ||
cluster = pydot.Cluster(name,label=name) | ||
|
||
for i in range(self.coarse_in): | ||
cluster.add_node(pydot.Node( "_".join([name,"mod",str(i)]), label="mod" )) | ||
|
||
for i in range(self.coarse_out): | ||
cluster.add_node(pydot.Node( "_".join([name,"mod",str(i)]), label="mod" )) | ||
|
||
# get nodes in and out | ||
nodes_in = [ "_".join([name,"mod",str(i)]) for i in range(self.coarse_in) ] | ||
nodes_out = [ "_".join([name,"mod",str(i)]) for i in range(self.coarse_out) ] | ||
|
||
return cluster, nodes_in, nodes_out | ||
|
||
def functional_model(self, EEdata, LEdata, ctrl_pass): | ||
#Exit select is not an ONNX or pytorch op | ||
# check input dimensionality | ||
assert EEdata.shape[0] == self.rows , "ERROR: invalid row dimension" | ||
assert EEdata.shape[1] == self.cols , "ERROR: invalid column dimension" | ||
assert EEdata.shape[2] == self.channels, "ERROR: invalid channel dimension" | ||
assert LEdata.shape[0] == self.rows , "ERROR: invalid row dimension" | ||
assert LEdata.shape[1] == self.cols , "ERROR: invalid column dimension" | ||
assert LEdata.shape[2] == self.channels, "ERROR: invalid channel dimension" | ||
|
||
if ctrl_pass: | ||
return EEdata | ||
else: | ||
return LEdata |
Oops, something went wrong.