forked from fei-aiart/ca-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
61 lines (48 loc) · 2.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import torch
from torch.autograd import Variable
import numpy as np
import os
import torchvision.utils as vutils
from data import *
from model import *
import option
from torch.utils.data import DataLoader
from myutils.Unet2 import *
opt = option.init()
norm_layer = get_norm_layer(norm_type='batch')
netG = MyUnetGenerator(opt.input_nc, opt.output_nc, 8, opt.ngf, norm_layer=norm_layer, \
use_dropout=False, gpu_ids=opt.gpu_ids)
netE = MyEncoder(opt.input_nc, opt.output_nc, 8, opt.ngf, norm_layer=norm_layer, \
use_dropout=False, gpu_ids=opt.gpu_ids)
fold = opt.test_epoch
netG.load_state_dict(torch.load('./checkpoint/netG_epoch_'+fold+'.weight'))
netE.load_state_dict(torch.load('./checkpoint/netE_epoch_'+fold+'.weight'))
netE.cuda()
netG.cuda()
test_set = DatasetFromFolder(opt, False)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=1, shuffle=False)
# netG = UnetGenerator(opt.input_nc, opt.output_nc, 8, opt.ngf, norm_layer=norm_layer, use_dropout=False, gpu_ids=opt.gpu_ids)
if not os.path.exists(opt.output):
os.makedirs(opt.output)
save_dir_A = opt.output + "/" + fold
if not os.path.exists(save_dir_A):
os.makedirs(save_dir_A)
for i, batch in enumerate(testing_data_loader):
real_p, real_s, identity = Variable(batch[0]), Variable(batch[1]), Variable(batch[2].squeeze(1))
real_p, real_s, identity = real_p.cuda(), real_s.cuda(), identity.cuda()
# parsing = real_p[:, 3:, :, :]
# real_p, real_s = real_s, real_p[:, 0:3, :, :]
# real_p = torch.cat([real_p, parsing], 1)
parsing_feature = netE(real_p[:, 3:, :, :])
fake_s1 = netG.forward(real_p[:, 0:3, :, :], parsing_feature)
# fake_s1[:, 1, :, :],fake_s1[:, 2, :, :], fake_s1[:, 0, :, :] = fake_s1[:, 0, :, :], fake_s1[:, 1, :, :], fake_s1[:, 2, :, :]
output_name_A = '{:s}/{:s}{:s}'.format(
save_dir_A, str(i + 1), '.jpg')
vutils.save_image(fake_s1[:, :, 3:253, 28:228], output_name_A, normalize=True, scale_each=True)
# fake_s1 = fake_s1.squeeze(0)
# fake_s1 = np.transpose(fake_s1.data.cpu().numpy(), (1, 2, 0)) / 2 + 0.5
# img = fake_s1[3:253, 28:228, :]
# cc = (img * 255).astype(np.uint8)
# cv2.imwrite(output_name_A, cc)
print " saved"